
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 11, NOVEMBER 2011 3933

Nanoscale Bipolar and Complementary Resistive
Switching Memory Based on Amorphous Carbon

Yang Chai, Yi Wu, Kuniharu Takei, Hong-Yu Chen, Student Member, IEEE, Shimeng Yu, Student Member, IEEE,
Philip C. H. Chan, Fellow, IEEE, Ali Javey, and H.-S. Philip Wong, Fellow, IEEE

Abstract—There has been a strong demand for developing an
ultradense and low-power nonvolatile memory technology. In this
paper, we present a carbon-based resistive random access memory
device with a carbon nanotube (CNT) electrode. An amorphous
carbon layer is sandwiched between the fast-diffusing top metal
electrode and the bottom CNT electrode, exhibiting a bipolar
switching behavior. The use of the CNT electrode can substantially
reduce the size of the active device area. We also demonstrate
a carbon-based complementary resistive switch (CRS) consisting
of two back-to-back connected memory cells, providing a route
to reduce the sneak current in the cross-point memory. The bit
information of the CRS cell is stored in a high-resistance state,
thus reducing the power consumption of the CRS memory cell.
This paper provides valuable early data on the effect of electrode
size scaling down to nanometer size.

Index Terms—Amorphous carbon (a-C), carbon nanotube
(CNT), complementary resistive switching, nonvolatile memory,
resistive random access memory (RRAM), resistive switching
memory.

I. INTRODUCTION

B ECAUSE OF the drive toward smaller, faster, and denser
nanoelectronics systems, the feature size of the non-

volatile memory continues to scale down toward nanometer
size. The conventional Si-based Flash memory is expected to
run into its physical limits in the near future [1]. Technology
breakthroughs in materials and device concepts are required for
next-generation nonvolatile memory. The two-terminal resistive
switching memory, where two metal electrodes are separated by
a functional insulator, offers the potential for high scalability
and ease of integration with current complementary metal–
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oxide–semiconductor technology. To increase the density of
the resistive memory, the cross-point architecture, where a
bistable material is sandwiched between the parallel bottom
electrodes and the orthogonal top electrodes, has been proposed
because the memory cell size can be reduced to 4F2 (F =
minimize feature size) and potentially even smaller if the mem-
ory cells are stacked in three dimensions [2], [3]. The switching
material can be electrically triggered between two resistance
states. This resistive switching behavior has been observed
in a variety of solid insulating and semiconducting materials,
including transition metal oxides (e.g., NiO, TiO2, HfO2, ZnO,
and Al2O3) [4]–[7], ferroelectric (e.g., PbZr0.52Ti0.48O3) [8],
ferromagnetic (e.g., MgO) [9], perovskite (e.g., SrZrO3)
[10], chalcogenides (e.g., GeSbTe) [11], organics (e.g., Alq3)
[12], amorphous silicon (a-Si) [13]–[15], and Si/a-Si core/shell
nanowires [16].

Carbon-based materials, including amorphous carbon (a-C)
[17]–[26], fullerene [27], graphene oxide [28], [29], carbon/
organic composite [30], and carbon nanotube (CNT) [31],
have been shown to exhibit resistive switching behavior for
nonvolatile memory application. Amorphous carbon is a non-
crystalline carbon allotrope in which a long-range crystalline
order is not present. Different switching mechanisms for a-C
have been proposed to explain the resistive change behavior,
including thermochemical sp2 carbon chain forming/rupture
[17], [18], electrochemical metallization [19]–[21], and valence
change [22], [23].

To achieve ultrahigh-density cross-point memory, it is nec-
essary to scale down the metal electrodes to nanometer size.
However, the fabrication of the nanometer feature size (e.g., 1–
2 nm) is still challenging for current lithography technologies.
At the nanoscale, carrier scattering at the surface leads to a
dramatic increase in metal resistivity. This requires researchers
to find a way for fabricating nanometer electrodes beyond the
limitation of current lithography length scales, and yet maintain
the good electrical conductivity at such a small scale. A metallic
single-walled CNT, another allotrope in the carbon family, has a
nanometer diameter (1–2 nm in this paper), excellent electrical
conductivity, and a high current-carrying capacity [32], and it
has been used as a nanoscale electrode for resistive switch-
ing memory with chalcogenide [33], [34] AgTCNQ [35] and
silicon oxide [36], [37]. This bottom-up approach using CNT
as the electrode is a promising solution for scaling down the
memory device to the nanometer size. The memory device with
CNT electrode also enables us to study the resistive switching
mechanism of the conduction filament below 5 nm. In this
paper, we demonstrate nonvolatile resistive switching for an a-C
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Fig. 1. Characterization of the as-deposited 30-nm-thick a-C film by e-
beam evaporation. (a) I–V curve of the a-C film measured by a four-point
method. (Inset) Photograph of the four-point measurement structure. (b) Raman
spectroscopy of the a-C film, showing a broad peak distribution from 1200 to
1700 cm−1. The strong peak around 1000 cm−1 is the second-order effect
from the Si substrate.

layer sandwiched between the top metal electrode and the
bottom CNTs. The single-walled CNT, with an average diam-
eter of 1.2 nm, is an ideal nanoscale electrode for ultradense
memory cells. We also demonstrate a complementary resistive
switch (CRS) [2] for a planar metal/a-C/CNT/a-C/metal device
for the first time. This CRS device potentially enables a large
passive crossbar array, with the CRS itself serving as an inte-
grated array cell selection device.

II. FABRICATION OF THE TEST STRUCTURE

The chemical bonding of carbon element has sp1, sp2, and
sp3 hybridization configurations. The a-C contains a mixture of
sp3, sp2 and sometimes a small fraction of sp1 sites, and some
hydrogen [38]. The sp2 bonding-dominated graphitic carbon
has low resistivity close to that of a metal, whereas the sp3

bonding-dominated diamond-like carbon is an insulator with
high resistivity. In this paper, we deposited a-C by an electron-
beam (e-beam) evaporation technique. A 30-nm-thick a-C was
deposited at the pressure of 10−5 torr. The experimental details
are described in the Appendix. To accurately determine the
resistivity of the as-deposited a-C film, we used a four-point
electrical test structure [see inset in Fig. 1(a)]. Fig. 1(a) shows a
typical current–voltage (I–V ) curve measured from a 30-nm-
thick a-C by e-beam evaporation. The resistivity (121.7 ±
75.7 Ω · µm) of the 30-nm-thick a-C is in the same order with
the previous report of a-C by e-beam evaporation and filtered
cathodic vacuum arc [22], [39]. Fig. 1(b) shows the Raman
spectra of the as-deposited a-C by e-beam evaporation. The G
peak is centered around 1572 cm−1. According to the three-
stage model by Ferrari and Robertson [40], the G peak position
locates in the range between nanocrystalline graphite and a-C.
The broad peak distribution from 1200 to 1700 cm−1 indicates
the amorphous structure of the carbon film.

Fig. 2(a) shows the process flow for fabricating the metal/
a-C/CNT/metal memory device. Horizontally aligned CNTs
were grown on ST-cut single-crystal quartz wafers using Fe
catalyst and CH4 as the carbon source. The detailed CNT
synthesis process has been described elsewhere [41]. Fig. 2(b)
shows a scanning electron microscope (SEM) image of the
horizontally aligned CNTs. The average CNT density is
∼2 CNT/µm with the number of the CNTs for the typical
device with 1-µm width varying from 1–3. The length of the
CNT is 200 µm in this paper, making the use of CNT for long

Fig. 2. Fabrication of the metal/a-C/CNT/metal memory device. (a) Process
flow for fabricating the memory structure. (b) SEM image of the horizontally
aligned CNTs with 200-µm length. (c) Cross-sectional SEM image of the
carbon memory cell, showing the metal electrode on top of the a-C layer.
(d) Top-view SEM image of the carbon memory cell, showing that the CNT
acts as the bottom electrode of the memory cell.

bit and word lines possible. Earlier work showed the aligned
CNT can be ∼1 mm long [41]. The horizontally aligned CNTs
were then transferred to a Si/SiO2 substrate using a 100-nm-
thick Au film and a thermal release adhesive tape [41]. The a-C
pattern was defined by a standard photolithography process. A
30-nm-thick a-C layer was deposited on top of the transferred
CNT by e-beam evaporation, followed by a liftoff process. The
top metal electrodes were patterned by a second e-beam evapo-
ration process and liftoff. In this paper, we used a fast-diffusing
metal, e.g., Ag or Au. Thus, the a-C layer was sandwiched
between the top metal electrode and the bottom CNTs. Fig. 2(c)
shows a cross-sectional SEM image of the a-C memory cell.
The unwanted CNTs were etched away by the oxygen plasma,
leaving the CNT only in the active region. Fig. 2(d) shows a
top-view SEM image of one memory cell. The CNTs act as the
bottom electrode in the memory cell, and they are orthogonal to
the top metal electrode.

III. RESULTS

The capping metal on top of a-C plays an important role
in determining the switching behavior. Unipolar switching has
been reported for the a-C layer with an inert metal electrode
such as W and Cr [17], [18]. The unipolar switching mechanism
of a-C has been explained as the formation/rupture of the sp2

carbon chain in the sp3 carbon matrix, in which carbon is the
monoatom for both the conductive filament and the insulating
matrix. Devices with a fast-diffusing metal such as Cu, Ag, and
Au on top of a-C have been reported to exhibit the bipolar
resistive switching behavior [19]–[21]. The bipolar resistive
switching behavior is the result of electrochemical metallization
of the conductive filaments, similar to the conductive-bridge
resistive memory [13]–[15], [19]–[21]. Bipolar switching is
more controllable than unipolar switching as the SET and the
RESET processes occur at opposite voltage polarities. In this
paper, we used a fast-diffusing metal (Ag or Au) as the top
metal electrode and CNTs as the nanoscale bottom electrode.
DC voltage sweeps were applied at the top metal electrode with
the bottom CNT electrode grounded [see Fig. 2(a)]. The initial
state of the memory device exhibits the high-resistance state
(HRS) around 5 MΩ. A positive dc sweep was used to switch
the memory cell to the low-resistance state (LRS). The dc
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Fig. 3. Electrical characterization of the carbon-based bipolar memory.
(a) I–V curves of a Ag/a-C/CNT/Ag memory cell. The dc sweep was per-
formed from 0 → 9 V → 0 → −9 V → 0. The current compliance is 80 µA.
(b) I–V curve of a Au/a-C/CNT/Au memory cell. The dc sweep was performed
from 0 → 10 V → 0 → −10 V → 0. The current compliance is 70 µA. Inset
of (b) shows the I–V curve of the Au/a-C/CNT/Au memory cell in the log–log
scale. Evolution of (c) HRS/LRS, where the resistance state is read at 1 V,
and (d) VSET/VRESET of a Ag/a-C/CNT/Ag cell. Statistical distribution of
(e) HRS/LRS and (f) VSET/VRESET of Ag/a-C/CNT/Ag and Au/a-C/
CNT/Au cells during endurance testing.

voltage was swept in the sequence of 0 → V → 0 → −V → 0
with current compliance below 100 µA. Fig. 3(a) shows the
first, fifth, and tenth sweeps of a Ag/a-C/CNT/Ag cell. SET

switching was swept with current compliance (80 µA in this
curve) to prevent the device from suffering permanent break-
down. The resistance state of the memory cell was switched
from HRS to LRS about 6.2 V and switched back to HRS
only by applying a negative dc voltage, exhibiting the typical
bipolar switching behavior. The resistance OFF/ON ratio at 5 V
is around 80. The Au/a-C/CNT/Au device [see Fig. 3(b)] shows
similar resistive switching behaviors to the Ag/a-C/CNT/Ag
device. Inset in Fig. 3(b) shows the log–log scale I–V curve
of the memory cell. The current–voltage relationship indicates
the different conduction mechanisms in HRS and LRS. In our
device configuration, the bottom CNT electrode is chemically
inert. No atomic migration will happen in the CNT in the
normal device operation region due to the high current-carrying
capacity (> 109 A/cm2) of the CNT [32]. Resistive switching
is most likely to be caused by the precipitates from the top
diffusing metal electrode to the a-C matrix [19]–[21]. The I–V
curve of the LRS of a Au/a-C/CNT/Au cell shows an ohmic-
like behavior with a slope of 1.1. This is believed to be from the
formation of a Au or Ag conduction filament during the SET

process [19]–[21]. The charge transport in HRS is in agreement

TABLE I
PARAMETERS OF THE CARBON-BASED MEMORY CELLS

WITH DIFFERENT ACTIVE DEVICE AREAS

with a trap-controlled space-charge-limited current mechanism
[19], [22]. The ON and OFF states of the memory cells retained
for at least two weeks at room temperature in air. No electrical
power was needed to maintain the resistance states, indicating
the nonvolatile property of the memory cell.

The use of the nanoscale CNT electrode enables us to study
the effect of the scaling of the active area on power consump-
tion. The active area of the memory device can be estimated
by the width of the top metal electrode and the diameter of the
bottom CNT, around 1 µm × 0.001 µm = 0.001 µm2. Table I
documents the comparisons of major memory parameters be-
tween our devices and the other a-C-based memory cells [19]–
[21]. Although the memory devices were fabricated by different
processes (different carbon deposition methods and different
top metal electrodes), all of them exhibit a similar bipolar
switching behavior. We listed the parameters of the devices
with different active areas in Table I. The RESET current is
defined as the maximum current that is attained before an abrupt
decrease in resistance. The dramatic decrease in the RESET

current is noticeably observed when the active device area is
reduced, whereas the resistance ON/OFF ratio and the retention
time of our nanoscale device remain comparable to those of the
larger device. These results suggest that the downward scaling
of the active device area can reduce the RESET current of the
a-C-based memory device [19]–[21]. The reduction of the
active device area using the CNT electrode confines the con-
duction filament more locally and reduces the RESET current.

The cycling measurements were repeated by the dc sweep.
Fig. 3(c) shows the resistance evolution of HRS and LRS
of a Ag/a-C/CNT/Ag device during the dc sweep cycling.
Resistance switching is reproducible, and the memory cell suc-
cessfully operates over 31 times. Fig. 3(d) shows the evolution
of VSET and VRESET during endurance testing. The VSET and
VRESET of Ag/a-C/CNT/Ag are higher than those of the metal/
a-C/metal structure [19]–[21], probably related to the bottom
CNT/metal contact. The contact area at the nanoscale electrode
is very small, resulting in current crowding. The actual contact
resistance of CNT is much larger than the ideal quantum
resistance limit. There is a large voltage drop at the interface
between CNT and surrounding materials (CNT/metal and CNT/
a-C). Fig. 3(e) and (f) shows the statistical distribution of the
HRS/LRS resistance and the SET/RESET voltage for Ag/a-C/
CNT/Ag and Au/a-C/CNT/Au memory cells during endurance
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testing. In LRS, the overall resistance of the cell is hundreds
of kiloohms, close to that of the CNT device directly contacted
with metal. In HRS, the presence of some sp3 carbon results in
the overall resistance of the cell on the order of megaohms. Both
the HRS and LRS resistance values of the memory cells show
a large variation during endurance testing. Our results are in
contrast to the better uniformity for a nanoscale memory device
(electrode diameter Φ = 50 nm) [42]. This difference possibly
results from the effect of further electrode downscaling. For
a large memory device, (e.g., Φ > 1 µm), the conductive fil-
aments’ formation process is determined by the competition
among many possible filamentary paths [19], resulting in a
large variation of the resistance states during endurance testing
[42]. For a nanoscale device, (e.g., Φ = 50 nm) [42], the
conduction filament is confined in a nanoscale location. Limited
possible filamentary paths are competitive for the formation
of the filament. As a result, the nanoscale memory device
during endurance testing exhibits better uniformity. For our
nanoscale memory device, (the average diameter of the CNT
electrode is ∼1.2 nm), the CNT electrode is comparable to or
even smaller than the size of the conductive filament. In the
ON state, the small contact area between the bottom CNT and
the conductive filament makes electrical coupling extremely
difficult. The dominant factor becomes the interface between
the nanometer electrode and the conduction filament instead of
the formation of different filamentary conduction paths. In each
switching cycle, the contact configuration at nanoscale is quite
different in the small contact area. It is reasonable to expect the
resistance states and VSET/VRESET to have a large variation in
our nanometer memory device.

We have successfully demonstrated the nanoscale resistive
memory based on the structure of metal/a-C/CNT/metal. To
further increase the density of the memory, cross-point memory
is preferred. The sneak leakage current is an inherent disadvan-
tage of cross-point memory [2]. A selection diode integrated
with the memory cell is often proposed to solve the sneak
current path problem [3]. Recently, CRSs have been proposed
for solving the sneak leakage current in cross-point memory, in
which two bipolar resistive memory cells are connected back
to back [2]. In our structure, the two series memory cells were
simultaneously fabricated, alleviating the impact from fabricat-
ing the top cell on the bottom cell. We fabricated the carbon-
based lateral CRS structure with two bipolar metal/a-C/CNT/
metal cells connected back to back by a common CNT as a
metal/a-C/CNT/a-C/metal device. The fabrication process has
been schematically described in Fig. 4(a). The difference be-
tween the metal/a-C/CNT/metal memory and metal/a-C/CNT/
a-C/metal memory devices lies in the pattern of the a-C layer.
For the metal/a-C/CNT/metal memory device, a-C only de-
posited on top of one end of the CNT; for the metal/a-C/CNT/
a-C/metal device, both ends of the CNT are contacted with
a-C/metal.

Inset in Fig. 4(b) shows the resistance measurement of a
Ag/a-C/CNT/a-C/Ag cell during the initialization process. The
as-fabricated two memory cells are both at HRS initially. This
HRS/HRS in CRS only exists in the pristine device. When a
positive voltage sweep is applied to the CRS cell, one (cell 1)
of the two memory cells is triggered to LRS. The decreasing

Fig. 4. I–V curves of the CRS memory cell. (a) Schematic of the process
flow for fabricating the metal/a-C/CNT/a-C/metal CRS cell. (b) I–V curves
of a Ag/a-C/CNT/a-C/Ag CRS cell. The dc sweep was performed from 0 →
4 V → 0 → −4 V → 0. Inset of (b) shows the resistance measurement of
the initialization process of the CRS cell. The resistance state of the CRS
cell is converted from initial HRS/HRS to LRS/HRS. (c) Semilog I–V curve
of a Au/a-C/CNT/a-C/Au CRS cell. The dc sweep was performed from 0 →
10 V → 0 → −10 V → 0. Inset of (c) shows the linear scale I–V curve of the
Au/a-C/CNT/a-C/Au cell.

resistance is observed in the inset in Fig. 4(b). Because the
polarity of the SET voltage in the other cell (cell 2) is opposite,
it remains in the HRS and acts as a voltage divider. When we
continue to sweep the voltage from zero to −Vth3 (beyond the
SET voltage of cell 2), both cells are in LRS. When the negative
voltage is increased to −Vth4, cell 1 is RESET to its HRS.
Fig. 4(b) shows the typical I–V curves of a Ag/a-C/CNT/a-C/
Ag CRS cell, which is a superimposed I–V characteristic of
the two bipolar memory cells connected back to back. The four
distinct threshold voltages enable us to define the CRS cell
with four different states [i.e., “ON” (LRS/LRS), “OFF” (HRS/
HRS), “0” (LRS/HRS), and “1” (HRS/LRS)] [2]. The bit infor-
mation is stored in the two back-to-back memory cells, whereas
the overall resistance of the CRS remains dominated by the
HRS, i.e., RHRS. The CRS cell exhibits overall high resistance
when storing the bit information, thus effectively reducing the
sneak current to the unselected cell. The use of two distinct
HRSs to store the bit information also reduces static power
consumption [2], while at the same time, this scheme is subject
to read/write noise margin constraints [43]. The Ag/a-C/CNT/
a-C/Ag CRS cell in Fig. 4(b) shows poor endurance perfor-
mance. The cell failed only after 11 cycles. In addition to the
reasons similar to the Ag/a-C/CNT/Ag cell, the poor endurance
of the cell is also related to the CRS structure itself. The
two cells in the CRS structure are not identical due to device
variations. The undesired RESET process may happen in one
cell before the desired SET in the other cell. Fig. 4(c) shows
the I–V curve from a Au/a-C/CNT/a-C/Au cell. It is found to
have a larger ON/OFF ratio and a larger switching voltage than
those of the Ag/a-C/CNT/a-C/Ag cell. This indicates that the
top metal electrode plays an important role on the performance
of the memory cell.

IV. CONCLUSION

In summary, we have successfully demonstrated a new
carbon-based resistive random access memory device. The use



CHAI et al.: NANOSCALE BIPOLAR AND CRS MEMORY BASED ON AMORPHOUS CARBON 3937

of the CNT as an electrode leads to the ultimately scaled cross-
point area. The operation current is greatly reduced, providing
the advantages, which lead themselves to a low-power device.
We have also shown a carbon-based CRS memory cell for the
first time. This new structure has the potential for use in dense
cross-point memory without the cell selection devices.

APPENDIX

The resistivity of carbon film is closely related to the deposi-
tion process. In this paper, we used an Edwards EB3 electron
beam evaporator, and we used a graphite target as a carbon
source. We conduct the deposition process at the pressure of
10−5 torr. The graphite has a very high melting point. To make
sure that the carbon is evaporated, we used the beam current
80–100 mA at the voltage of 5.6 kV. The through distance
between the target and the substrate is short (∼30 cm). The
strong radiation from the carbon target heats the substrate.
In this paper, the deposition process is actually not a room-
temperature process. The thermal couple close to the sample
holder displays over 135 ◦C. The actual substrate temperature is
even higher than this value. Deposition of a 30-nm-thick carbon
film takes 12–15 min. This process at elevated temperature is
similar to an in situ anneal, it and helps reduce the resistivity of
carbon film [38].
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