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Theory of liquid-mediated strain release in two-dimensional materials
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Strain engineering in transition metal dichalcogenides is an important means to manipulate these materials’
electronic and optical properties. Recently, it has been shown that WSe2 monolayers grown on fused silica
substrates using chemical vapor deposition can retain residual strain due to thermal expansion mismatch.
Moreover, it was demonstrated that this strain can be released using a solvent-evaporation mediated decoupling
method. A continuum theory to explain these observations is introduced and its predictions analyzed. The theory
is used to establish that it is plausible that bonds much weaker than typical covalent bonds are sufficient to
stabilize strains in the range of those experimentally observed. It is shown that the presence of the solvent
modifies the equilibrium in-plane displacement of the film, while its lifting is negligible. Under the proper
conditions, this displacement leads to an increase in the decoupling force, thereby initiating the strain relief
process. The theory clarifies the role of the liquid surface tension in the relaxation process, and it identifies
the relationships between droplet wetting behavior and initial strain state that will lead to solute-evaporation
mediated decoupling.
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I. INTRODUCTION

Two-dimensional transition metal dichalcogenides (2D
TMDCs) have been researched intensely due to their fasci-
nating properties [1,2]. Moreover, it has been proven that
their optical and electronic properties can be strain-engineered
[3–5]. Accordingly, the need for methods by which the strain
in 2D materials can be controlled has become more pressing.

Recently, it was shown that WSe2 monolayers synthesized
using chemical vapor deposition are able to retain some of
the strain arising from the mismatch in thermal coefficients
of expansion (TCE) between the film and the substrate, while
still retaining their intrinsic optoelectronic properties [6]. This
observation is intriguing, as the strain was retained for films
grown on amorphous substrates. While strain stabilization
arising from crystalline epitaxial growth is well documented,
one might expect that remnant thermal mismatch strain medi-
ated by van der Waals bonding to a substrate would be relaxed
during cooling from the growth temperature, as the bonding
between the film and substrate is relatively weaker.

Since the strain is mediated by the bonding between the
film and substrate, the strain should be relieved if the film
decouples from the substrate. A method to release the TCE
mismatch induced strain in WSe2 mono- and bilayers was
recently presented [7]. This solvent-evaporation mediated de-
coupling (SEMD) process consists in letting a droplet of
acetone evaporate on top of a strained WSe2 film grown on
amorphous silica. The decoupling refers to the supposition
that the droplet evaporation enables the film to slip upon the
substrate so as to reduce its internal strain while still remain-
ing bonded to the substrate. The strain in the 2D TMDC is
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released as the film-liquid-vapor triple contact line sweeps
over the film. The stress in the films relaxes from the edges in-
ward, as is shown through time-dependent photoluminescence
experiments [7]. In contrast, no strain relaxation is observed
when the film is completely submerged in acetone.

The effectiveness of the SEMD process raises (at least)
three interesting questions. First, are the bonds formed during
van der Waals epitaxy sufficiently strong to sustain the strain,
or must there be some number of covalent bonds between
the film and the substrate? Second, what is the nature of the
perturbation to the film induced by the presence of the acetone
that allows for decoupling of the film and the substrate? Third,
what are the conditions under which SEMD will be operative?

In the following, these questions are addressed by analyz-
ing a continuum model that considers the balance of surface
tension and elastic forces as the liquid evaporates from the
film. Section II introduces the continuum model, and it es-
tablishes that bonds in the strength range of a van der Waals
bond are capable of maintaining the strain within the film. The
forces that arise when the droplet is placed on the film are also
presented, and it is argued that the liquid/vapor/film interface
results in an additional in-plane force on the decoupling front.
Section III presents an analysis of the relationship between the
in-plane force and the wetting behavior of the liquid droplet.
Specifically, the wetting behaviors and initial strain states for
which SEMD is possible are identified. Section IV presents
the conclusions.

II. MODEL

The geometry of the simple continuum model used to
explore SEMD is displayed in Fig. 1. The WSe2 sample is as-
sumed to adhere to the substrate under an initial tensile radial
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FIG. 1. A schematic of the continuum model: (a) side view and
(b) top-down view. The WSe2 sample is assumed to be circular in
shape with unstrained radius R, and rigidly attached to the substrate
within the radius �, again defined in the unstrained material coordi-
nate system. The material within this radius is assumed to be under
the fixed biaxial strain εo (that arises from the synthesis process).
The radius of the contact patch between the acetone and the film is
taken to be r0, also in the unstrained material coordinate system. The
contact angle in Eq. (8) is shown.

strain of εo imposed by TCE mismatch between the substrate
and the film. For simplicity, the film is assumed to be circular,
so that an axisymmetric model can be applied. The elastic
contributions to the film energy are modeled within linear con-
tinuum elasticity theory, and the contributions of the droplet
to the energy of the system are modeled using a continuum
theory as well. A droplet of solvent is placed on the center
of the film (initially covering the entire film). The droplet is
assumed to be a spherical cap (gravity is neglected). In the
unstrained WSe2 monolayer material coordinates [Fig. 1(b)],
the radius of the circle defined by the intersection of the
droplet and WSe2 film is defined to be r0, with r0 decreasing
to zero as the droplet evaporates. As noted above, the WSe2

monolayer is expected to decouple from the edges inward
[7], and this decoupled region is demarcated by the dashed
line at radius � in Fig. 1(b). Points in the WSe2 monolayer
with r > �, i.e., those points in the decoupled region, are
assumed to remain bound to the substrate, but able to slide
without friction; the model neglects readherence of the film

after slipping. The evaporation rate of the acetone is assumed
to be slow in comparison to the rate at which the film assumes
its elastic equilibrium, so that an equilibrium static calculation
suffices.

A. Magnitude of atomic forces mediating film adhesion to the
substrate

The model is first applied to develop an understanding of
the forces preventing the TCE mismatch strain from relaxing
due to thermal fluctuations or other effects.

Consider the film-substrate system without the droplet.
Specifically, consider the configuration in which the film is
decoupled and completely free to slide beyond a radius of
�, and is also biaxially strained by an amount εo for r < �

[Fig. 1(b)]. One can use continuum linear elasticity theory [8]
to estimate the magnitudes of the forces that the atoms near �

must exert in order to keep the film stable.
The system is axially symmetric with a deformation map

given by r → r + u(r). Within continuum linear elasticity
theory (see Appendix C for details), one can show that the
elastic energy in the film is given by

Eelastic(�) = 2π�2(λ + μ)ε2
o

+ 2π�2μ(λ + μ)ε2
o (R − �)(� + R)

�2μ + R2(λ + μ)
, (1)

where λ and μ are the Lamé constant and shear modulus [8]
of the WSe2 film, respectively. From this same analysis, one
finds that the radial displacements of the film are given by

u(r) =
{

εor, r < �,
�2εo(μr2+R2(λ+μ))

r[�2μ+R2(λ+μ)] , r � �

}
. (2)

The generalized force leading to decoupling of the mono-
layer can be computed from the elastic energy. One finds

F� = −∂Eelastic

∂�
= −4π�R4(λ + μ)2(λ + 2μ)ε2

o

[�2μ + R2(λ + μ)]2 , (3)

where the negative sign indicates that the force is acting to
decrease �, as expected. F� is plotted as a function of �

for the parameters shown in Table I, a monolayer of radius
R = 8 μm, and initial strain of εo = 0.7% in Fig. 2(a), for
reference. The sample size and strain were chosen to be
comparable to those studied experimentally [7], though the
experimental samples are triangular. Unless otherwise noted,
these parameters will be used throughout the study.

To make a quantitative estimate of the bond forces nec-
essary to retain the strain, consider the following model.
Suppose that the atoms within the � − δ < r < � annulus
slip so as to relieve the strain within the annulus. Also as-
sume that the atoms with positions such that r > � remain
decoupled from the substrate, so that they can slide freely on
the substrate. One can estimate the average bond force on the
atoms in the considered annulus by equating the reduction in
elastic energy to the work those bond forces would need to do
to restrain the film to its preslipped configuration.

The change in elastic energy upon decoupling an annulus
of thickness δ starting from a strained region of radius �,
defined to be �Eelastic(�, δ), can be approximated by

�Eelastic(�, δ) ≈ F�δ. (4)
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TABLE I. Numerical values of the material properties and the methods by which they were obtained. DFPT stands for density functional
perturbation theory, and γsl was computed using Eq. (8) with θ = 22◦. Values are in MeV μm−2 units.

λ [12] μ [12] γsv [13] γlv [14] γsl

144 303 0.24 0.16 0.10
DFPT Contact angle measurement Capillary rise Young’s equation

In this sense, F� sets the scale for the atomic forces, and
it can be used to assess the changes in these atomic forces
with changing parameters. However, one can make a more
accurate calculation by computing the finite difference in
energy directly using Eq. (1), so going forward, we define
�Eelastic(�, δ) = Eelastic(� − δ) − Eelastic(�).

The average displacement of the atoms in the � − δ < r <

� annulus due to the motion of the decoupling front is defined
to be ū(�, δ). Defining the displacement of the atoms within
the annulus upon motion of the pinned region boundary by δ

to be �u(r, δ),

�u(r, δ) = εo(� − δ)2[μr2 + R2(λ + μ)]

r[μ(� − δ)2 + R2(λ + μ)]
− εor, (5)

FIG. 2. (a) The generalized force on the decoupling boundary
plotted as a function of �. (b) An estimate of the average force
per atom experienced by atoms with � − δ � r � � computed as
described in the text plotted vs � for three different values of δ.
The magnitudes of these forces are approximately two orders of
magnitude below the range associated with covalent bonding.

one finds

ūr (�, δ) =
∫ �

�−δ
2πr�u(r, δ)dr

π
(
�2 − (� − δ)2

)
= − 2δR2(2δ − 3�)(λ + μ)εo

3(δ − 2�)[μ(δ − �)2 + R2(λ + μ)]
. (6)

Using this observation, the magnitude of the average force
on the atoms in the region of interest, defined to be f̄ (�, δ), is
approximated by the change in elastic energy computed using
Eq. (1) divided by the product of the number of atoms in the
strip contacting the substrate and their average displacement:

f̄ (�, δ) = �Eelastic(�, δ)Ac

ūr (�, δ)π (�2 − (� − δ)2)

= 3R2Ac(δ − 2�)(λ + μ)(λ + 2μ)εo

δ(2δ − 3�)[�2μ + R2(λ + μ)]
, (7)

with Ac the area of the unit cell for the monolayer. f̄ (�, δ) is
plotted as a function of � for various values of δ in Fig. 2(b).

Care should be used in applying Eq. (7). Examination of
this expression shows that as δ → 0, the characteristic bond
force diverges ∼δ−1. This implies that the average bond force
must be infinite to keep the film coupled to the substrate. The
difficulty, of course, is that the film is not an elastic continuum,
and decreasing the radius of a coupled region by amounts less
than the lattice parameter makes little sense. So applying the
model for δ ∼ lattice parameter is not likely to yield reason-
able results. Moreover, the film may not relax smoothly on
the scale of the lattice parameter, but, as discussed below,
it is likely to have domains of relaxation that in turn trigger
other domains to relax, etc. However, a more detailed analysis
requires an atomic scale model, which is beyond the scope of
this work.

Importantly, for larger values of δ, the model predicts that
forces of the order of 0.01 eV/Å are sufficient to retain the
strain for reasonable values of δ. The strength of covalent
bonds is of the order of 1 eV/Å [9], so the bond strength
necessary to sustain the strain is approximately two orders
of magnitude weaker than that expected from covalent bonds.
Indeed, atomic scale simulations for a strained MoS2 mono-
layer system predict that, in order to maintain a tensile strain
of ∼1%, forces with an order of magnitude of 0.01 eV Å−1

per atom are needed [10]. The theory predicts that the av-
erage force per atom within a strip 50 Å wide necessary to
sustain the observed strain is of the order of 0.01 eV Å−1. It
is reasonable to expect that the slipping of the decoupling
front will involve the correlated motion of atoms over a strip
this wide [11]. It is also likely that the decoupled portion
of the film will, perhaps weakly, readhere to the substrate,
further stabilizing the strain within the film. The model, which
neglects this readhering, will overestimate the force required
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for stabilization. Thus it appears that a relatively thin strip of
atoms weakly bonded to the surface is able to maintain the
tensile strain in the film, such that it is not necessary to invoke
the presence of covalent bonds between the substrate and the
film. The analysis, however, does not rule out the possibility
that a small number of covalent bonds might be present.

B. Forces on atoms with a droplet present

Empirically, it is known that the passage of the contact
triple point across the surface of the film leads to decoupling
and release of the stress. Evidently, the contact triple point
increases the forces tending to decouple the film. The model
in Fig. 1 reveals the origins of this increase in force.

In general, when considering static friction, one assumes
that the frictional force is related to the normal force. One
possible explanation for the decoupling of the film by the
evaporating liquid droplet is that the droplet lifts the film and
reduces the friction force [7]. A detailed analysis of this pos-
sibility is presented in Appendix A, where it is shown that the
film is expected to lift approximately 0.01 Å, an amount that
is surely negligible. Given this observation, then, the origins
of the decoupling must be present in a model for which the
lifting of the film is negligible. One such model is presented
here.

The starting point for this model of SEMD is the explo-
ration of the deformation of a solid in the presence of a
droplet. If a droplet sits on an undeformable substrate, the
contact angle obeys Young’s equation [15]:

γlv cos(θ ) + γsl − γsv = 0, (8)

where θ is the contact angle between the substrate and the
liquid (Fig. 1); the subscripts l , v, and s denote liquid, vapor,
and solid, respectively; and γi j is the specific interfacial free
energy of the i j interface. It is well known, however, that if
the substrate is deformable, Eq. (8) is no longer valid [16–24].
While there are several models describing this system [22,25–
27], the film under consideration is bound to a substrate that
resists the vertical deflection, as noted above.

Therefore, we suppose that a spherical cap droplet is sup-
ported by a material that is only allowed to have in-plane
deformation. Physically, this corresponds to a thin film sup-
ported on a rigid substrate, with the interaction between the
film and substrate strong enough to prevent out-of-plane de-
formations. Considering the droplet to be centered on the
film (see Fig. 1), the problem remains axisymmetric, and
the deformation map can also be written as r → r + u(r). The
distance from the center of the droplet to the triple contact line
is defined to be r0 + u0, with u0 = u(r0). As in the previous
section, it is assumed that u(r) = εor if r � �.

First, consider the case in which the film is submerged in
liquid, i.e., r0 > R. In this instance, the elastic energy of the
film changes as � is decreased from � = R, but the interfacial
energies remain constant (in the approximation that any film
strain dependence to the liquid/film interfacial free energy can
be neglected); then, the system reduces to that presented in
Sec. II A. Similarly, if r0 � �, the deformation of the film will
not have any effect on the interfacial energy of the system,
as the film-liquid-vapor triple contact line sits on the unde-
formable region; in this case, the forces in the system are also

reduced to those computed in Sec. II A. Thus for the droplet to
influence the decoupling process, the edge of the droplet must
fall in the film’s deformable region, i.e., � < r0 < R, and this
will be assumed in what follows.

With the droplet present, the total energy of the system is
given by

E = 2π (εo�)2(λ + μ) + π�2γsl

+ 2π

(∫ r0

�

(γsl + Es)r dr +
∫ R

r0

(γsv + Es)r dr

)

+ γlvAlv, (9)

where the first two terms on the right-hand side correspond
to the elastic and interfacial energy in the 0 � r < � region,
respectively; Alv is the liquid-vapor interface area; and Es is
the strain energy density, which can be written as [28]

Es[u(r), u′(r)]= (λ + 2μ)[r2u′(r)2 + u(r)2] + 2λru(r)u′(r)

2r2
.

(10)
An underlying assumption in Eq. (9) is that, as the number
of film atoms in contact with the liquid or the vapor phase
is a function only of r0, the film deformation state for the
calculation of the solid-liquid and -vapor interfacial energies
is neglected.

As Alv can be written as a function of u0 and r0 (see Ap-
pendix B), Eq. (9) is a functional of the in-plane displacement
u(r), and it depends too on r0. Thus, the tools of variational
calculus are suitable to study this system (for an introduction
to the topic, see, e.g., Ref. [29]).

The in-plane displacement function can be defined as a
piecewise function

u(r) =
⎧⎨
⎩

rεo, r < �,

u1(r), � � r � r0,

u2(r), r0 � r � R,

(11)

subject to boundary conditions

u1(r0) = u2(r0) = u0,

u1(�) = εo�. (12)

Computing the variation of the total energy, δE , by varying
functions u1 and u2, along with the r0 parameter, one obtains

δE =
∫ r0

�

(
F1,u1 − d

dr
F1,u′

1

)
δu1dr (13a)

+
∫ R

r0

(
F2,u2 − d

dr
F2,u′

2

)
δu2dr (13b)

+ (
F1 − u′

1F1,u′
1
− F2 + u′

2F2,u′
2
+ γlvAlv,r0

)∣∣
r=r0

δr0

(13c)

+ (
F1,u′

1
− F2,u′

2
+ γlvAlv,u0

)∣∣
r=r0

δu0 (13d)

+ (
F2,u′

2

)∣∣
r=R

δu2(R), (13e)

where

Fi = 2πr(γsi + Es[ui(r), u′
i(r)]), (14)

γs1 = γsl , γs2 = γsv , and a subscript after a comma denotes
differentiation with respect to the quantity following the
comma. Since all the variations are arbitrary, one can assume
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that each of the terms (13a)–(13e) of Eq. (13) vanishes inde-
pendently.

Consider terms (13a) and (13b) of Eq. (13). Since δui is
an arbitrary variation, one concludes that Fi,u − d

dr Fi,u′ = 0.
Using the definition of Fi, Eq. (14), and solving the resulting
second-order differential equation, one finds

ui(r) = ai1r + ai2

r
, (15)

where ai j are constants to be determined. Using the boundary
conditions (12), and setting term (13e) equal to zero, it is
possible to write three of the undetermined constants ai j in
terms of a11:

a12 = �2(ε − a11),

a21 = μ
a11

(
r2

0 − �2
) + �2ε

r2
0μ + R2(λ + μ)

,

a22 = R2(λ + μ)
a11

(
r2

0 − �2
) + �2ε

r2
0μ + R2(λ + μ)

. (16)

An analytical expression for a11 as a function of r0 can be
derived from setting term (13d) to zero. Lastly, it is possible
to compute a numerical value for r0 by setting term (13c) to
zero. Then, with this solution, the equilibrium configuration of
the system and its energy are determined from Eqs. (9), (15),
and (16), along with the expression for a11 and the numerical
value of r0.

III. RESULTS AND DISCUSSION

The hypothesis investigated here assumes that the strained
film will be near instability, and that the strain release will be
governed by a type of near-critical behavior found in other
systems governed by stick/slip friction. Theoretical analysis
of pinned charge density waves [30], earthquake fault slipping
[31], and dislocation motion [32–34] all show that in such
systems, a small perturbation force can lead to a large-scale
response. In the present case, we propose that a small pertur-
bative force can initiate the slipping process that relaxes the
film.

In this framework, then, all that is needed is for the droplet
to provide the necessary perturbing force. The theory pre-
sented here shows that there is an in-plane force arising from
the liquid/vapor/solid intersection.

If the droplet is considered, the elastic state of the film is a
function of the interfacial energies γi j , meaning that it will be
different from that shown in Sec. II A. To understand the extra
force provided by this perturbation, we begin by comparing
the in-plane displacements u of the equilibrium configuration
in systems with and without a droplet, Fig. 3. For the chosen
interfacial tensions [which correspond to θ < π/2 in Eq. (8)],
the displacements within the decoupled region are reduced
relative to the values that they have in the absence of the
droplet. The implication is that the droplet places the region
� < r < r0 under compression relative to the droplet-free
case. This additional compressive strain exerts a force on
the boundary of the decoupled region tending to decrease �.
Hence, for the chosen parameters, the presence of a droplet
with � < r0 < R increases the decoupling force.

FIG. 3. In-plane displacement in the equilibrium configuration
for a system with � = 5 μm and different liquid volumes. The
vertical black line corresponds to r = �, while the others correspond
to r = r0 for the different values of V

Note that the increase in decoupling force is of the order
of a few percent (see Fig. 4)—an amount consistent with
the notion that the films are near instability. That the extra
force increases with the droplet volume may explain why
sometimes, as reported in Ref. [7], it takes several droplet
applications in order to fully relax the film. As the volume
of the droplet decreases due to evaporation, the extra force
may fall below the threshold necessary to trigger decoupling,
causing the radius of the contact patch of the droplet to fall
below �. Reapplying another larger drop increases the force
and enables decoupling to proceed.

Also note that in the presence of the strain, the contact
angle defined by Eq. (8) is not the final contact angle of the
fluid. Since the film is strained, and the strain exerts a force on
the triple point, the contact angle is altered slightly. The angle
might be decreased or increased depending upon the sign of

FIG. 4. Percentage increase in decoupling force (now elastic plus
droplet effects) relative to just the elastic force for three different
droplet volumes plotted as a function of �. The step discontinuity at
larger � arises from the fact that, within the model, there is no extra
force if the radius of the pinned region is larger than the radius of the
droplet contact patch.
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FIG. 5. Schematics, displacement, and strains for a droplet on top of a strained film. For cases 3 and 4, a volume of V = 500 μm3 was
used; γlv = 0.45 MeV2 μm−1 and γsl = 0.40 MeV2 μm−1 were selected so that γlv would match that of water, and the Young’s angle, defined
by Eq. (8), was 110◦. Cases 2 and 4 use an initial strain of εo = −0.7%. The white arrows indicate the direction of the displacements associated
with the strain. For cases 1 and 4, the droplet has the potential to initiate decoupling of the film from the substrate. For cases 2 and 3, the droplet
will likely stabilize the strain state.

the stress and the value of the contact angle for an unstressed
film.

In addition, the circular shape of the film assumed in our
model is different from that of the experiments described in
Ref. [7] (triangular). The circular geometry was chosen as it
leads to an axisymmetric model that can be solved relatively
easily. While the geometry of the film may alter the shape of
the contact patch for the droplet and the film, the underlying
physical processes will remain very similar, and the insights
from the circular model will be helpful in understanding the
release of the triangular samples.

The change from a circular geometry to a triangular one
also results in more atoms at the edge of the film, and it is
reasonable to expect that these atoms might be bonded more
strongly to the substrate than atoms in the interior of the film.
The model does not account for differences between interior
and edge atoms, but experimental results [7] prove that the
force exerted by the droplet is enough to overcome any force
due to extra bonds that the edge atoms might have with the
substrate.

A. Conditions under which evaporation of a droplet will release
strain

To assess the conditions in which the SEMD is possible,
one has to consider how the system will behave for a variety
of parameter sets and strains. Though the mathematics under-
lying the effect of an evaporating droplet are subtle, there is
a simple way to qualitatively predict the effects of droplet
evaporation on the decoupling. If the in-plane projection of

the liquid-vapor interfacial tension antialigns with the radial
displacements arising from the initial strain (radially outwards
if εo > 0, radially inwards if εo < 0), the evaporation will in-
crease the net force on the decoupling interface, and it can lead
to decoupling. Conversely, if the projection of the liquid-vapor
interfacial tension is aligned with the displacements associ-
ated with ε0, the evaporating droplet will tend to stabilize
the strain state. The applicability of this simple assessment
is presented in Fig. 5. This figure shows, for a variety of
contact angles as defined by Eq. (8), the displacements ud (r)
and the strains εd (r) = u′

d (r) induced by the application of an
evaporating droplet. Note that the displacements plotted here
are computed according to

ud (r) = uwith droplet(r) − uwithout droplet(r) (17)

with uwith droplet(r) and uwithout droplet(r) referring to the so-
lutions for the displacements with and without the droplet,
respectively. From the εd plots shown in the third column of
Fig. 5, one can see the effect the droplet has on the decoupling
force F�: if εd is of the opposite sign of εo in the � < r < r0

region, as in cases I and IV, then the decrease in the elastic
energy prompted by a decrease in � is bigger than in the
no-droplet case, thus increasing |F�|, and the droplet has the
potential to initiate strain release. In contrast, in cases II and
III, the strain release will not be initiated.

IV. CONCLUSIONS

A theoretical model for the SEMD method for as-grown
strain release in a film is developed and analyzed. The model
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demonstrates that bond strengths well below those of covalent
bonds are likely sufficient to stabilize the strains arising during
the van der Waals epitaxial growth of the WSe2. The model
also predicts that a droplet of liquid can generate an additional
in-plane force that can trigger the decoupling of the film from
the substrate. Specifically, if the contact angle of the liquid is
such that the projection of the liquid/vapor surface tension is
antialigned with the elastic displacements of the coupled film,
then the in-plane force has the potential to trigger decoupling.

The origin of the extra decoupling force is the compression
(or tension, depending upon the system in question) of the
outer portion of the film that is free to slide. This additional
strain arises from the interfacial tensions associated with
the droplet/film/vapor triple point. For the acetone/WSe2

strained in tension samples, the extra compression of the
free sliding region from the droplet can be relieved if more
of the film decouples by reducing �, and the droplet can
initiate strain release. The extra decoupling force represents
an approximate 4% increase in the decoupling force for the
specific case of an acetone droplet and a WSe2 film grown on
amorphous silica.

Based on the model, it may be possible to use the SEMD
method with a wide range of substrates and 2D materials
beyond TMDCs, opening the possibility of creating complex
relaxation patterns that exploit the strain-tuned direct-to-
indirect band-gap change [3] to create novel devices. The
fundamental understanding of the origins of the extra force
provided by the droplet, and the predictions outlined in Fig. 5,
make the case for the SEMD method to be a viable pathway to
engineer strain in 2D materials, thereby harnessing the variety
of strain-tunable properties [35].
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APPENDIX A: OUT-OF-PLANE DISPLACEMENT

Allowing for the film to have out-of-plane (OOP) dis-
placements will change the model in three main ways. First,
some of the liquid will be wrapped by the film, resulting in
a decrease of Alv; if this is to happen spontaneously, this
will necessarily decrease the liquid-vapor interfacial energy.
Second, the substrate-film interaction has to be taken into
account. Finally, the elastic energy of the film, previously
given by (10), needs to be modified to account for the OOP
displacement. We can estimate the extent of the OOP displace-
ments by looking at how the energy of the system changes
when these additional terms are considered.

The deformation map of the film is given by {r, 0} → {r +
u(r), f (r)}, where f (r) is the OOP displacement at radius r.
If the film is lifted at r0, a portion Vw of the liquid volume V
will be wrapped by the film. Assuming that the length of the
OOP feature of the film near r0 is small compared to R, and
that far from r0 the film is at the equilibrium height [set at

FIG. 6. Energy of the WSe2/SiO2 system as a function of the
film-substrate separation, d . The solid line is Eq. (A3) using De =
0.50 meV Å−2 and β = 1.31 Å−1.

f (r) = 0], we have

Vw = 2π

∫ r0

0
[r + u(r)][1 + u′(r)][ f0 − f (r)]dr

≈ π f0(r0 + u0)2, (A1)

where f0 = f (r0). Then, the liquid-vapor interaction energy is
given by

Elv = γlvAlv (V − Vw ) (A2)

[an expression for Alv (V ) is given in Appendix B].
The substrate-film interaction energy is fit to a Morse po-

tential:

Esubs-film = 2π

∫ R

0
rDe{1 − exp [−β(r − req)]}2dr, (A3)

where De and β are constants. To determine De and β, density
functional theory (DFT) computations were run using the
Vienna Ab initio Simulation Package [36–38] version 5.4.4.
The projected-augmented-wave method was used to model
the core electrons [39], and the exchange-correlation energy
was estimated using Perdew-Burke-Ernzerhof potentials [40].
All the simulations were run using a 500 eV cutoff energy
for the plane-wave basis set, a �-centered k-point 8 × 8 × 1
grid, and convergence criteria of 10−4 eV for the electronic
self-consistent cycle. The simulations consisted in a 27-layer
slab of α-SiO2 with a reconstructed (001) surface, as reported
in Ref. [41]; a 3 × 3 monolayer WSe2 supercell was posi-
tioned on top of the SiO2; to obtain a commensurate structure,
the SiO2 was put under a −0.3% biaxial compression. The
parameters in Eq. (A3) were obtained by fitting the energies
obtained by DFT, the results being De = 0.50 meV Å−2 and
β = 1.31 Å−1. The energies, along with a the Morse fit, are
shown in Fig. 6.

The elastic energy will now have to account for the bending
energy. Using linear elasticity theory, we find

Ebending = πκ

∫ R

0
r

(
f ′(r)

r
+ f ′′(r)

)2

dr, (A4)

where κ = 11.25 eV [42] is the bending rigidity. Also, the
strain energy density is modified to incorporate OOP displace-
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FIG. 7. Energy differences of systems with and without OOP
displacement. The parameters used where those shown in Table I,
V = 150 μm3, � = 5 μm. The values for r0 and u0 were obtained
using the formalism shown in Sec. II B.

ment:

Es = 1

8
(λ + 2μ)

(
f ′(r)2 + 2u′(r)

)2 + λu(r)[ f ′(r)2 + 2u′(r)]

2r

+ (λ + 2μ)u(r)2

2r2
. (A5)

Using a Gaussian-like function for the OOP displacement,

f (r) = f0 exp

[
− (r − r0)2

σ

]
, (A6)

and Eqs. (A2)–(A5), the energy of the system was evaluated,
and the differences in energy of these systems compared to
the case in which no OOP displacement is allowed, �EOOP,
are plotted in Fig. 7. Note that, as we are not solving the vari-
ational equations for this case, the forms of the displacements
used to obtain the energies shown in Fig. 7 are not the ones
that minimize the energy; this is justified because the goal of
this Appendix is not to determine a precise value for f0, but
rather to assess its orders of magnitude. The values reported
in the figure were obtained by choosing the value of σ to min-
imize the energy change for each value of f0; for the reported
f0 range, it was found that the values of σ that minimized the
energy were in the 240 < σ < 250 Å2 range, corresponding
to an OOP displacement feature of ∼50 Å. Figure 7 shows
that, even though lifting the film results in a reduced system
energy, the f0 range in which this happens is very narrow, with
the minimum happening around f0 = 0.0125 Å. This level
of OOP displacements will not alter the analysis too much,
as compared to assuming no OOP, and it is consequently
neglected.

APPENDIX B: LIQUID-VAPOR INTERFACE AREA (Alv)
EXPRESSION

The volume of a spherical cap with base radius d = r0(1 +
ε) and contact angle θ is given by

V =
√

Alv (Alv + 2πd2)
√

1 − πd2

Alv

6
√

π
. (B1)

Solving for Alv , linearizing in the strain ε, and then doing
the replacement εr0 → u0, one finds

Alv (V ) =
2π7/3r5

0u0
(√

π2r6
0 + 9V 2 + 3V

)
√

π2r6
0 + 9V 2

[
6V

(√
π2r6

0 + 9V 2 + 3V
) + π2r6

0

]2/3
+

π5/3r3
0

[
2u0

(√
π2r6

0 + 9V 2 + 3V
) + r0

√
π2r6

0 + 9V 2
]

√
π2r6

0 + 9V 2
[
6V

(√
π2r6

0 + 9V 2 + 3V
) + π2r6

0

]1/3

+ [
6πV

(√
π2r6

0 + 9V 2 + 3V
) + π3r6

0

]1/3 − πr0(r0 + 2u0). (B2)

APPENDIX C: FULL DERIVATION OF EQUATIONS

1. Variational equation: Eq. (13)

We start by deriving the energy variational, Eq. (13). To do
this, it is useful to group the full energy of the system, Eq. (9),
as follows:

E =
∫ r0

�

F1[u1(r), u′
1(r), r] dr︸ ︷︷ ︸

E1

+
∫ R

r0

F2[u2(r), u′
2(r), r] dr

︸ ︷︷ ︸
E2

+φ(r0, u0), (C1)

where

φ(r0, u0) = 2π (εo�)2(λ + μ) + π�2γsl + γlvAlv (r0, u0).
(C2)

Then, the variational of the energy can be written as

δE = δE1[u1, u′
1; r0] + δE2[u2, u′

2; r0] + δφ(r0, u0), (C3)

where E1 and E2 are functionals of the in-plane displacement
u, u′, and they also depend on r0; on the other hand, φ is a
function of the parameters r0 and u0. As there are no physical
constraints for the values of u1(r0), u2(r0), and u2(R) [that is,
other than the continuity constraint u1(r0) = u2(r0)], natural
boundary conditions (NBCs) are used. Thus, the variationals
of the individual terms in Eq. (C3) are given by

δE1 =
∫ r0

�

(
F1,u1 − d

dr
F1,u′

1

)
δu1dr

+ (
F1 − u′

1F1,u′
1

)∣∣
r=r0

δr0 + F1,u′
1

∣∣
r=r0

δu1(r0), (C4)

δE2 =
∫ r0

�

(
F2,u2 − d

dr
F2,u′

2
δu2dr

)

+ F2,u′
2

∣∣
r=Rδu2(R)
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− (
F2 − u′

2F2,u′
2

)∣∣
r=r0

δr0

−F2,u′
2

∣∣
r=r0

δu2(r0), (C5)

δφ = φ,r0δr0 + φ,u0δu0, (C6)

where the functional dependencies have been obviated. Fi-
nally, as u1(r0) = u2(r0) = u0, we arrive at Eq. (13) simply
by grouping terms.

We can arrive at Eq. (15) by considering that, for an ex-
tremum point, δE = 0; then, as δui is arbitrary, the integrand
in Eqs. (13a) and (13b) should be zero. Using the definition of
Fi, Eq. (14), we then find that

Fi,ui − d

dr
Fi,u′

i
= 0 ⇒

(λ + 2μ)ui + rλu′
i

r
− [2(λ + μ)u′

i + r(λ + 2μ)u′′
i ] = 0 ⇒

ui − ru′
i − r2u′′

i = 0 ⇒
ui = ai1r + ai2

r
. (C7)

Now we obtain expressions for the constants ai j . Analyzing
the NBC set in Eq. (13d), we get

F2,u′
2
|r=R = 0 ⇒

a22μ

R
= a21R(λ + μ). (C8)

Solving for a12, a21, a22 in the boundary conditions Eqs. (12)
and (C8), we get Eqs. (16). It is possible to get an analytical
expression for a11 by using the NBC set by Eq. (13d) and
plugging in the expressions of the other constants; however,
the expression is very long and not very enlightening.

2. Energy and displacement in a strained disk: Eqs. (1) and (2)

While there are many ways to obtain the energy and the
displacement of a strained disk, here, to maintain the spirit
of the paper, we will opt for an energy minimization using a
variational approach.

The energy of the system without a droplet is given by

End = 2π�2(λ + μ)ε2
o + 2π

∫ R

�

Esr dr, (C9)

i.e., the energy of the system is only due to its strain state. The
variational of Eq. (C9) is then

δEnd =
∫ R

�

(
G,u − d

dr
G,u′

)
δu dr (C10a)

+ (G,u′ )|r=Rδu(R), (C10b)

where G = G[u(r), u′(r)] = 2πrEs[u(r), u′(r)], and we have
assumed NBCs at u(R). As δu in Eq. (C10a) is arbitrary, the
integrand should be set to zero. Then, for an extremum point,
we have that

G,u − d

dr
G,u′ = 0 ⇒

(λ + 2μ)u + rλu′

r
− [2(λ + μ)u′ + r(λ + 2μ)u′′] = 0 ⇒

u − ru′ − r2u′′ = 0 ⇒
u = a1r + a2

r
, (C11)

where ai are constants to be determined from the boundary
conditions. One boundary condition comes from the in-plane-
displacement continuity, u(�) = εo�, while the other comes
from Eq. (C10b). Solving for the ai constants, we get

a1 = �2εoμ

�2μ + R2(λ + μ)
,

a2 = R2�2εo(λ + μ)

�2μ + R2(λ + μ)
. (C12)

Finally, inserting Eq. (C12) into (C11), we get Eq. (2), and
inserting this expression for the in-plane-displacement into the
energy of the system, Eq. (C9), gives us Eq. (1).
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