Quantum of optical absorption in two-dimensional semiconductors

Hui Fang, Hans A. Bechtel, Elena Plis, Michael C. Martin, Sanjay Krishna, Eli Yablonovitch, and Ali Javey

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720; Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87106

The optical absorption properties of free-standing InAs nanomembranes of thicknesses ranging from 3 nm to 19 nm are investigated by Fourier transform infrared spectroscopy. Stepwise absorption at room temperature is observed, arising from the interband transitions between the subbands of 2D InAs nanomembranes. Interestingly, the absorption associated with each step is measured to be approximately 1.6%, independent of thickness of the membranes. The experimental results are consistent with the theoretically predicted absorption quantum, $A_0 = \pi n_c$, for each set of interband transitions in a 2D semiconductor, where n_c is the fine structure constant and n_t is the optical local field correction factor. Absorption quantization appears to be universal in 2D systems including III–V quantum wells and graphene.

The optical properties of heterostructure quantum wells (QWs) have been extensively studied since the 1970s, in GaAs–AlGaAs (1), GaInAs/AlInAs (2, 3), InGaAs/InP (4), and HgCdTe/CdTe (5). Here we do a careful quantitative examination of the intrinsic absorption properties of free-standing 2D semiconductor thin films, which has previously been done only for layered structures, such as MoS$_2$ (6). (The criterion of real two-dimensionality is that the material thickness be smaller than the electron Bohr radius.)

Previous work has shown that graphene, a 2D semimetal, has a universal value of light absorption, namely πa, where a is the fine structure constant (7). Here, we use free-standing InAs membranes with exceptionally small thickness as a model material system to accurately probe the absorption properties of 2D semiconductors as a function of thickness. We demonstrate that the magnitude of the light absorption is an integer product of a quantum of absorbance. Specifically, each set of interband transitions between the 2D subbands results in a quantum unit of absorbance of $A_0 = \pi a n_c$, where n_t is the optical local field correction factor. The total absorbance for the first several sets of interband transitions is simply given as $A = MA_0$, where M is the integer number of allowed transitions for a given photon energy. The result here appears to be universal, except for small correction factors associated with higher bands.

Recently, there has been a high level of interest in exploring the fundamental science (8–10) and associated devices (11–20) of free-standing (i.e., attached to a substrate by van der Waals or other weak forces) 2D semiconductors. Two-dimensional layered semiconductors [e.g., MoS$_2$ (11), WSe$_2$ (15), GaSe (16), Bi$_2$Te, CaCu$_2$O$_4$ (17), Bi$_2$Se$_3$ (18), and Bi$_2$Te$_3$ (19)] in ‘‘quantum blend’’ forms [InAs (12) and InGaSb (20)] can be readily mounted on virtually any support substrate, thereby enabling a wide range of novel device concepts and practical applications. In one example system, InAs quantum membranes (QMs) with adjustable thicknesses down to a few atomic layers have been realized by a layer transfer process onto a user-defined substrate (12). The approach enables the direct optical absorption studies of fully relaxed (i.e., unstrained) (21) 2D III–V semiconductors by using transparent substrates, without the constraints of the original growth substrate (10). Here, we use InAs membranes of thickness $L_{\text{m}} \sim 3$–19 nm on CaF$_2$ support substrates as a model material system for examining the absorption properties of 2D semiconductors. Given the large Bohr radius of ~34 nm (22) in bulk InAs, strong quantum confinement of carriers is readily obtained for sub-20-nm quantum membrane thicknesses. Note that there are only ~5 unit cells in a 3-nm-thick InAs QM, given its lattice constant of ~0.6 nm (23). In such a quantum mechanically confined 2D system, there is electronic band dispersion in the two unconfined directions, with discrete energy subband edges at values determined by quantum confinement (24) in the third direction. In our case, the InAs QMs can be effectively treated as infinitely deep potential wells, because they are confined by air on one side and by a wide band-gap (25) CaF$_2$ substrate on the other side. Fig. 14 shows the optical microscope image of a periodic array of ~5-μm-wide InAs strips (of ~3 nm thickness), on a CaF$_2$ crystal substrate produced by the layer transfer process (SI Text). CaF$_2$ was chosen as the support substrate as it is optically transparent for the wavelength range of interest. From visual appearance (Fig. 1A), it is evident that ultra-thin InAs QMs exhibit strong optical contrast, thereby allowing for the detailed optical characterization even for the films consisting of a few atomic layers in thickness.

Fig. 1B shows the calculated energy levels of a 9-nm InAs QM with CaF$_2$ and air boundaries. The molecular beam epitaxy-grown InAs samples are not intentionally doped, eliminating band filling (the Fermi level was calculated from an estimated bulk electron density of 2×10^{10}/cm3) (26). Here, the effects of surface accumulation layers due to surface defects are ignored (see Fig. S1 for surface accumulation layer effects). Fig. 1C depicts the qualitative band structure of a 2D InAs QM, with vertical arrows indicating the interband transitions from the nth heavy hole (hh) light hole (lh) subband to the nth electron (e) subband. Here we define e_{hh}-lh$_n$, and e$_{\text{lh}}$-lh$_n$ as the nth set of interband transitions. Due to spatial matching of electron/hole wave functions in different energy subbands, interband transitions in quantum wells are favored when $\Delta n = n' - n = 0$, where $n' $ and n are the subband indices for electrons and holes, respectively (27). Consequently, there are two allowed transitions to each electron subband: one from the corresponding hh subband and the other from lh subband.

We use Fourier transform infrared (FTIR) microspectroscopy (Fig. 2) to probe optical interband transitions (in the range of 0.3 eV < hv < 1.2 eV) in InAs QMs at room temperature (SI Text). Transmittance and reflectance spectra were collected in the range of 2,414–9,656 cm$^{-1}$ (0.30–1.20 eV) over an aperture size of ~50 × 50 μm2, with 8 cm$^{-1}$ (1 meV) resolution and 512

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1To whom correspondence may be addressed. E-mail: eliy@eecs.berkeley.edu or ajavey@eecs.berkeley.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309563110/-DCSupplemental.

10.1073/pnas.1309563110
is the vacuum permittivity, \(\varepsilon_0 \) is incident light, \(L \) is a step function for each interband transition, where \(\varepsilon \) is the electron charge, \(n_i \) is the real part of surrounding refractive index, \(c \) is the speed of light, \(\varepsilon_r \) is the vacuum permittivity, \(m_e \) is the free electron mass, \(h \) is Planck’s constant, \(m_e^* \) and \(m_{in}^* \) are the indexes for the conduction and valence subbands.

Fig. 1. (A) Optical microscope image of InAs 2D strips (~3 nm thick) on a CaF\(_2\) substrate. (Inset) The atomic force microscope image of a single InAs strip. (B) CaF\(_2\)/InAs (9 nm)/air quantum well band diagram with energy referring to \(E_F \), abbreviated as \(E_{\text{lh}} \), \(E_{\text{hh}} \), \(E_{\text{lh2}} \), \(E_{\text{hh2}} \), and \(E_{\text{lh3}} \) are the indexes for the conduction and valence subbands. Note that only the first two conduction/valence subband edges are shown. (C) Qualitative band structure schematic of a 2D InAs QM, with arrows indicating the allowed optical interband transitions between valence and conduction subbands.

Fig. 2. Schematic illustration of the FTIR microspectroscopy setup used for the absorption measurements. The absorption spectrum is obtained from the measured transmission and reflection spectra. The incident light angle was actually perpendicular to the membrane.

Fig. 3. Absorptance for (A) 3-nm, (B) 6-nm, (C) 9-nm, (D) 14-nm, and (E) 19-nm InAs quantum membranes. The absorptance spectra are corrected by dividing by the surface area fill factor of InAs.

averages for all samples with different thicknesses. Atmospheric H\(_2\)O and CO\(_2\) effects were removed using OMNIC 8.2 software (Thermo Scientific). The absorption spectra of InAs QMs for each thickness were obtained by subtracting the transmittance and reflectance from a normalized 100% spectrum, yielding Fig. 3. The final spectra were generated by dividing the measured spectra by the fractional area fill factor of the InAs strips. Fig. 4 shows the overlap absorptance (A) spectra of InAs QMs with \(L_z \sim \) 3 nm, 6 nm, 9 nm, 14 nm, and 19 nm. Clear step-like features are observed in the absorptance spectra arising from the quantized interband transitions between the 2D subbands (10). The spacings between the measured absorptance steps are in quantitative agreement with the calculated interband energy spacings (see Fig. S2 for the detailed analysis). Note that intersubband transitions are negligible due to our transverse electric (TE) polarization. The experimental finding here is that the individual absorptance steps plateau at \(-1.6 \pm 0.2\% \) (SD) for all samples, regardless of the QM thickness. The result was reproducible for multiple samples and measurements.

To shed light on this observed absorption behavior, the electron–photon interaction in a semiconductor material is theoretically evaluated from Fermi’s golden rule. If a light wave with electric field \(E \), polarization vector \(\hat{e} \), and frequency \(\omega \) is incident perpendicular to a direct band-gap semiconductor membrane with a thickness \(L_z \), in an infinitely deep potential well model (28), the optical absorption coefficient is

\[
\alpha(E, \omega) = \frac{e^2}{n_i \varepsilon_r m_e^* \omega} \left(\frac{1}{1/m_{in}^* + 1/m_{en}^*} \right) |\hat{e} \cdot \vec{p}_{cv}|^2,
\]

which is a step function for each interband transition, where \(e \) is the electron charge, \(n_i \) is the real part of surrounding refractive index, \(c \) is the speed of light, \(\varepsilon_r \) is the vacuum permittivity, \(m_e^* \) is the free electron mass, \(h \) is Planck’s constant, \(m_e^* \) and \(m_{in}^* \) are the indexes for the conduction and valence subbands.

Fig. 4. Microscopic image of the InAs 2D strips (~3 nm thick) on a CaF\(_2\) substrate. Inset: Atomic force microscope image of a single InAs strip.
the effective mass for electrons and holes of the nth conduction and valence subbands present from the 2D density-of-states, and \(\varepsilon_n \) is the momentum matrix element describing the electron–photon interaction. Eq. 1 arises from Fermi’s Golden Rule, with optical perturbation \(\varepsilon_A p_{\varepsilon n}/m_n \), where A is the vector potential related to the optical electric field as \(E = jmA \).

The reciprocal effective masses \(1/m_o \) and \(1/m_p \) arise in k-p perturbation theory (29) from a similar perturbation \(h\varepsilon /p_{\varepsilon n}/m_n \). The reduced effective mass produced by this repulsion of conduction and valence bands in second-order k-p perturbation theory is \(1/m_o^2 = 1/m_{p}^2 = 4 |p_{\varepsilon n}/m_n|^2/E_{v}c \), where \(E_{v}c = \hbar o \) is the interband transition energy.

Thus, k-p perturbation theory puts \(|p_{\varepsilon n}|^2 \) in the denominator of Eq. 1, whereas the optical perturbation puts \(|p_{\varepsilon n}|^2 \) in the numerator of Eq. 1. Thus, the momentum matrix element \(|p_{\varepsilon n}|^2 \) cancels. Many of the other terms in Eq. 1 cancel as well, leaving behind the dimensionless absorptance \(\alpha L_z = (\varepsilon^2/4\pi\varepsilon_o h)c/n_\varepsilon \). Aside from \(\pi \), a correction for the surrounding refractive index \(n_\varepsilon \), the absorptance per 2D sublevel is \((\varepsilon^2/4\pi\varepsilon_o h)c \), a group of fundamental constants known as the fine structure constant \((\varepsilon^2/4\pi\varepsilon_o h)c = \alpha = 1/137 \).

The prime on the absorption coefficient \(\alpha' \) is meant to distinguish it from the fine structure constant \(\alpha \). Because \(\alpha L_z \) is dimensionless, it is somewhat inevitable that it would be related to \(\alpha \), the dimensionless parameter in opto-electronics and quantum physics. Indeed, optical absorption depends on electric charge, and \(\alpha \) is actually electric charge squared (in fundamental units where \(h = 1 \), c = 1, \(4\pi\varepsilon_o = 1 \)).

The simplified calculation above is vindicated by Szkopek’s detailed calculations (30, 31), which multiply the step function by a Sommerfeld Coulomb correction factor

\[
S(\omega) = \frac{2}{1 + \exp\left(-2\pi \sqrt{Ry}/(\hbar o - E_c)\right)}
\]

where \(Ry \) is the electron-hole Rydberg binding energy. This puts a sharp, narrow, double-height spike, right at the step function, whose width is related to the typical millivolt hydrogenic binding energy. In the experiment (Fig. 4) the double-height spikes are washed out, and hardly seen, leaving only small vestigial peaks at each step.

There is an additional correction. The dimensionless absorption steps that we observe at \(\sim 1.6\% \) are actually smaller than \(\pi \alpha = 2.3\% \). This is due to a local optical electric field correction factor, which we call \(n_t \). In a surrounding refractive index \(n_t = n_\varepsilon \), as is clear from Eq. 1. When the quantum membrane is mounted on a substrate of refractive index \(n_\varepsilon \), it experiences both the incident electric field, \(E_{inc} \), and the Fresnel reflected electric field \((1 - n_t)/(1 + n_t))E_{inc} \). Superposing the incident and reflected fields, that local optical electric field at the quantum membrane is weaker by \((1/(1 + n_t))^2 \), and the local field correction factor becomes \(n_t = ((n + 1)/2)^2 \), yielding the corrected step absorption \(A_Q \):

\[
A_Q \equiv \alpha (\omega)L_z = \pi \alpha n_t = \pi \alpha \left(\frac{2}{1 + n_t} \right)^2.
\]

In our case the refractive index of CaF₂ is \(n = 1.43 \), changing the optical local field correction factor \(n_t \) to \(((n + 1)/2)^2 = 1.48 \), reducing the absorption step height to \(\sim 1.58\% \), in close agreement with our observed step height in Fig. 4.

Thus, we have shown experimentally and theoretically that light absorption in 2D semiconductors is independent of specific material parameters, such as band gap, effective mass, and thickness. The simplification of \(A = MA_Q \) holds true over a broad range of photon energy, given that the considerable confinement energy shifts with \(M \).

The measured absorptance values for previously reported III–V and II–VI heterostructures QWs are in the range of 0.6–1.1% per QW for the first step (1–5), slightly smaller than the \(A_Q \) value presented in this work. This is expected due to an optical local field correction factor \(n_t \sim 3.5 \), appropriate to a quantum well grown and embedded in high-index material, rather than to our case of free-standing quantum membrane on a low-index substrate. On the other hand, the result here is also consistent with the reported absorptance for graphene (7), \(A \sim \pi \alpha \), which is for a totally suspended membrane with vacuum on either side.

In summary, light absorption in near-ideal 2D semiconductors is experimentally examined by using free-standing InAs QMs as a model material system. The absorptance of 2D InAs is found to be an integer multiple of the quantum absorptance, \(A_Q \), governed only by the fundamental physical constant \(\alpha \). Besides its significance in the basic understanding of electron–photon interactions in quantum confined semiconductors, this result provides a unique insight toward the use of 2D semiconductors for novel photonics and optoelectronic devices. Future work should focus on experimental studies of the absorptance magnitude of other 2D material systems.

ACKNOWLEDGMENTS. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract DE-AC02-05CH11231. A.J. and E.Y. acknowledge funding from the National Science Foundation (NSF) Center for Energy Efficient Electronics Science (NSF Award 0939514). A.J. acknowledges support from the World Class Program at Sunchon National University.

 Supporting Information

Fang et al. 10.1073/pnas.1309563110

SI Text

Fabrication of 2D InAs Membranes. InAs thin films (thicknesses of 7 nm, 10 nm, 15 nm, and 20 nm) were grown by molecular beam epitaxy on a GaSb handling wafer with an AlGaSb (60 nm thickness) sacrificial layer. The InAs layer was pattern etched into microribbon strips with a photosensitive mask (~10 μm pitch and ~5 μm line width), using a mixture of citric acid (1 g/mL water) and hydrogen peroxide (30%) at 1:20 vol ratio. After selective etching of the AlGaSb layer with ammonium hydroxide [3% (vol/vol) in water], the InAs membranes were transferred onto CaF$_2$ substrates (International Crystal Laboratories; double side polished, 1 mm thick), using polydimethylsiloxane substrates (~2 mm thick). The photoresist was then removed with acetone. The final InAs thicknesses after transfer were 6 nm, 9 nm, 14 nm, and 19 nm ± 1 nm as confirmed by transmission electron microscopy (1, 2). To obtain the 3 ± 1-nm-thick InAs sample, a 6-nm InAs membrane on CaF$_2$ was etched alternately by citric acid and hydrogen peroxide.

FTIR Measurements. The light absorption of 2D InAs quantum membranes (QMs) ($L_z = 3$–19 nm) was measured by Fourier transform infrared (FTIR) microspectroscopy, using a Thermo Scientific Nicolet Continuum Infrared Microscope with a Nicolet 6700 FTIR spectrometer (beamsplitter: CaF$_2$) at Beamlines 1.4 and 5.4 at the Advanced Light Source. We note that the same FTIR setup has been successfully used by Wang et al. (3, 4) with 2D graphene. 2D InAs membranes were transferred onto CaF$_2$ substrates (International Crystal Laboratories; double side polished, 1 mm thick), using polydimethylsiloxane substrates (~2 mm thick). The photoresist was then removed with acetone. The final InAs thicknesses after transfer were 6 nm, 9 nm, 14 nm, and 19 nm ± 1 nm as confirmed by transmission electron microscopy (1, 2). To obtain the 3 ± 1-nm-thick InAs sample, a 6-nm InAs membrane on CaF$_2$ was etched alternately by citric acid and hydrogen peroxide.

Surface Charge Effects on the Band Diagram. The InAs epilayers are not intentionally doped. A body doping concentration (N_D) of 2 x 1016 cm$^{-3}$ was assumed to construct the band diagrams of those InAs 2D quantum wells. Note that this N_D value is in close agreement with our previous device simulation fitting of electrical measurements on similar membranes (1, 6). Bulk InAs is known to form polar surfaces with positive surface charges due to defects and an electron accumulation layer in the near surface region. This may affect the shape of the quantum potential well. We modeled these effects. The surface defect states (unoccupied In adatoms states) are found to be above the conduction band minimum (CBM) with a density of ~1015 cm$^{-3}$ (7–10). Fig. 1 shows the energy band diagrams of different thickness InAs QMs for the cases without and with surface charges ($N_S = 10^{15}$ cm$^{-2}$). The results are simulated by solving Poisson’s equation and Schrodinger’s equation self-consistently, using a next-nanot2 simulator.

Comparison of Interband Transition Energies Between Experiments and Modeling. Fig. S2 presents the experimental interband transition energies along with those obtained from simulation, with and without surface charges. To determine the experimental interband transition energies from the absorption spectra, the first derivatives were obtained, where the location of each peak corresponds to the energy of an interband transition. For the theoretical modeling with surface accumulation charges ($N_S = 10^{15}$ cm$^{-2}$), the transition energies for E_{cm, hh_1} were taken as E_F, E_{hh_1} if E_F is above E_{cf}. As depicted in Fig. S2, the effect of surface charges (i.e., E_F position) is minimal and only the onset of absorption for the first interband transition is shifted slightly. The experimental values fall between the two modeling cases, closer to the case where there is no N_S.

Intersubband Transitions. The absorption from intersubband transitions is expected to be negligible for our measurement configuration using TE polarized light, where the light wave vector is perpendicular to the QMs. The reason is that the intersubband dipole moment $\mu_{\text{hh}} = \langle \psi_i | e \vec{r} | \psi_h \rangle$ is perpendicular to the QMs. To determine the experimental interband transition energies from the absorption spectra, the first derivatives were obtained, where the location of each peak corresponds to the energy of an interband transition. For the theoretical modeling with surface accumulation charges ($N_S = 10^{15}$ cm$^{-2}$), the transition energies for E_{cm, hh_1} were taken as E_F, E_{hh_1} if E_F is above E_{cf}. As depicted in Fig. S2, the effect of surface charges (i.e., E_F position) is minimal and only the onset of absorption for the first interband transition is shifted slightly. The experimental values fall between the two modeling cases, closer to the case where there is no N_S.

Fig. S1. Zoomed-in band alignments of CaF$_2$/InAs/air without and with surface charges ($N_s = 10^{12}$ cm$^{-2}$) for (A) 3-nm, (B) 6-nm, (C) 9-nm, (D) 14-nm, and (E) 19-nm InAs QMs. A bulk doping concentration of 2×10^{16} cm$^{-3}$ was assumed.

Fig. S2. Comparison of interband transition energies from experiment and modeling without and with surface accumulation charges for (A) $E_{e_1-hh_1}$ and (B) $E_{e_2-hh_2}$.

Fang et al. www.pnas.org/cgi/content/short/1309563110