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In 2017 approximately 1.7% of global electricity demand — rep-
resenting only 0.28% of total global primary energy consump-
tion — was met by electricity generated by photovoltaic (PV) 

modules, the vast majority of which comprise crystalline silicon 
(c-Si) solar cells1. These modest statistics belie a transformational 
change that is occurring in electricity generation worldwide: 2016 
saw PV become, for the first time, the fastest growing source of net 
electricity generation capacity with 74 GW installed; an additional 
100 GW of PV was installed in 2017, roughly one-third of all new 
capacity1,2. While crystalline silicon, with a current share of 95% of 
the PV market2, is forecast to remain the dominant PV technology 
for the coming decades, over 70% of c-Si PV production capacity is 
vested in the fabrication of a low-performance cell design in which 
the entire rear silicon surface is alloyed with aluminium to form 
the positive terminal of the device3. This cell structure, called the 
aluminium back surface field (Al-BSF) cell, has a practical upper 
limit on its power conversion efficiency (PCE) of only ~20%, com-
pared to the theoretical maximum PCE of 29.4%3,4. An additional 
20% of the current market, employing the more complex passivated 
emitter and rear cell (PERC) design, is similarly limited to PCEs 
of around 23–24% (Box 1)3,5. Since it is widely recognized that the 
ongoing success of the c-Si PV industry is predicated on the sus-
tained increase in cell and module efficiency coupled with a con-
tinuing decline in production costs6,7, simple, innovative solar cell 
designs that exceed these empirical limits are vital for the continued 
advancement of c-Si PV.

The most salient common feature that limits the PCE of the 
Al-BSF and PERC cells is the direct application of the contact-
ing metal onto the light-absorbing silicon wafer. This intimate 
metal–silicon contact leads to recombination losses of the photo-
generated electrons and holes due to a high density of electroni-
cally active states at the silicon–metal interface that lie within the 
silicon bandgap. The use of high temperature functional-impurity 
doping beneath the metal terminals (the phosphorus and alumin-
ium dopants at the electron and hole contacts, respectively, of the 
Al-BSF and PERC cells) partially alleviates this effect, reducing the  

defect-assisted Shockley–Read–Hall contact recombination rate 
and dramatically lowering the contact resistance. However, absorber 
doping induces its own fundamental optoelectronic energy losses—
notably Auger recombination, bandgap narrowing and free carrier 
absorption—which limit the device performance8–11.

To mitigate these deleterious effects, so-called passivating 
contacts are being developed, which can further reduce contact 
recombination losses via the insertion of passivating thin films 
(commonly silicon oxide, SiOx; or hydrogenated amorphous silicon, 
a-Si:H) between the silicon wafer and the overlying metal terminals. 
Some passivating contact technologies remove the dopants from 
the absorber material altogether, incorporating them into a contact 
structure that is external to the c-Si wafer. An archetypal example 
of such a device structure is the silicon heterojunction (SHJ) cell 
(Box 2). In addition, dopant-free passivating contact approaches are 
also being explored which, in principle, offer a means of effectively 
eliminating the aforementioned energy loss mechanisms that con-
strain the efficiency in c-Si solar cells with heavily doped contacts.

Following the passivating contact approach a spate of record effi-
ciencies, the first to match or surpass the long-held 25% record set 
by a high efficiency PERC cell design12,13, were achieved in 2014/15 
on devices fabricated on large-area wafers: by SunPower (25%; now 
25.2%)14,15, Kaneka (25.1%)16 and Panasonic (25.6%)17. On the labo-
ratory scale, research at the Fraunhofer Institute for Solar Energy 
Systems in 2015 yielded a small-area device (4 cm2) featuring a full-
area rear-side passivating contact with a PCE of 25.1%18, now 25.7%, 
a record for a device with both sides contacted19. Kaneka, after mov-
ing to an interdigitated back contact (IBC) cell architecture to maxi-
mize light coupling into the c-Si absorber, reported a device with a 
certified efficiency of 26.7%—the current high watermark for c-Si 
solar cells20,21.

Put into historical context, in the past four years c-Si PV research 
has yielded an additional 1.7% absolute improvement in record 
device efficiency, compared to just 1.8% over the preceding 25 
years12. This progress is highlighted in Fig. 1a, which plots the recent 
rise in passivating contact cell efficiencies, as well as the historical 
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development of technologies with heavily doped, directly metal-
lized contacts. Tellingly, all of the devices with efficiencies greater 
than 25% feature passivating contacts. Indeed, the most successful 
devices have both their electron and hole contacts passivated. And 
while it is remarkable that these high-performance devices have 
come from a variety of cell architectures (full-area, front- and rear-
side contacted16,18,19; partial-area, all-back contacted14,15,17,20,21), the 
common path to achieve high performance solar cells is clear: pas-
sivating the contact regions of the device.

This article reviews the various conceptual designs and material 
combinations used to fabricate passivating contacts on c-Si, as well 
as solar cell architectures that incorporate passivating contacts. In 
doing so we elucidate the physics of contact formation and the his-
torical progression that has led to this surge in efficiency gains, and 
critically evaluate the manufacturing potential of these emerging 
technologies. As such, this review provides an overview of concepts 
and materials related to contact formation and passivating contacts. 
For detailed examinations of surface passivation22–25, contact forma-
tion26,27, fabrication techniques and additional material details in the 

specific context of passivating contact formation24,28,29, we direct the 
reader to other review articles in the literature.

Carrier selectivity and Fermi level pinning
In order for a solar cell to function there must be an internal physi-
cal mechanism that spatially separates photoexcited electrons and 
holes within the light-absorbing semiconductor, resulting in their 
extraction at the negative and positive device terminals, respec-
tively30. This process of charge-carrier selectivity at the terminals 
implies an asymmetric internal flow of charge carriers towards the 
solar cell’s contact regions: that is, a strong electron and weak hole 
current towards the electron contact, and vice versa for hole and 
electron currents towards the hole contact31.

On the device level, the suppression of the current of non-col-
lected charge carriers to the contact of opposite polarity (for exam-
ple, holes to the electron contact) is strongly reflected in the open 
circuit voltage (Voc) since these non-collected carriers recombine at 
the contact, reducing the electrochemical potential of the system 
and so lowering the device voltage. The energy losses associated  

Box 1 | Fabrication of Al-BSF and PERC cells

The vast majority of commercially manufactured c-Si solar cells, 
commonly called Al-BSF solar cells, are processed with only five 
main fabrication steps (texturing; front phosphorus diffusion; sili-
con nitride, SiNx, deposition; screen printing and co-firing of the 
metal electrodes). This simplicity is a result of the fact that many of 
the processes and materials combine to enact multiple functions in 
the device. For example, the phosphorus diffusion getters bulk im-
purities, establishes a low contact resistance at the silicon/metal in-
terface, mitigates the effects of surface defects on recombination and 
enables lateral charge transport between the front metal fingers. The 
SiNx layer further passivates surface defects at the non-contacted, 
phosphorus diffused, textured front side of the device; it also acts 
as an anti-reflection coating (ARC) and passivates bulk defects af-
ter contact firing via hydrogenation. The aluminium screen-printed 
paste, sintered at the same time as the front screen-printed silver 
grid, alloys with the silicon surface, undergoing a melt–recrystalliza-
tion process leaving a heavily doped p+ region under the remaining 
Al metal contact; the etching of the SiNx by glass frit in the Ag paste 
ensures the formation of the metal contact to the n+ silicon surface.

This simplicity in manufacturing has enabled low cost, high 
throughput production at the expense of device performance. 
Recombination at the rear contact constrains the PCE to 
~20%, so Al-BSF cells are typically fabricated on lower quality 
multicrystalline wafers. PERC devices are manufactured in a 
similar way to the Al-BSF cell but with rear-surface passivation 

(often aluminium oxide, AlOx) and localized aluminium BSF 
contacts (typically defined by laser ablation of the AlOx layer). 
The addition of the passivation layer at the rear suppresses surface 
recombination, thereby increasing the device voltage relative 
to the full-area Al-BSF cell. For this reason, PERC cells have a 
higher efficiency potential and benefit from being fabricated on 
monocrystalline silicon wafers with higher bulk lifetimes.

An additional upgrade to the PERC design comes in the form 
of the so-called selective emitter. Here, a very heavy diffusion 
aligned directly underneath the front metal grid enables the 
formation of a low contact resistance and minimizes contact 
recombination. Outside of the contact region, where the surface 
defects are passivated with SiNx, a lighter diffusion, with reduced 
Auger recombination and parasitic free carrier absorption, is 
utilized, optimized for lateral charge transport (in concert with 
the front metal grid pattern). With additional technological 
advancements—for example, using Al paste with boron additives 
to increase the dopant density in the local BSF; and continued 
improvements in p-type silicon bulk lifetime, front metallization, 
and surface passivation—the PCE of PERC cells in manufacturing 
environments are expected to reach 24%5. However, all of the 
additional processing steps add complexity, and therefore cost, 
to the manufacturing process, impacting the potential viability of 
high-efficiency PERC concepts relative to simpler high-efficiency 
cell designs with passivating contacts.
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with the collected current (electrons passing through the elec-
tron contact) manifest in the series resistance of the device which 
strongly influences the fill factor (FF). Figure 1b, which plots the FF 
versus Voc for those cell configurations in Fig. 1a for which the data 
are available, shows that passivating contacts have enabled more 
advantageous FF/Voc combinations compared to cells with heavily 
doped contacts, indicative of enhanced charge-carrier selectivity32.

At a fundamental level, the asymmetric internal currents that 
are a consequence of charge carrier selection are governed by both 
the conductivity, σe and σh, and the gradient in electrochemical 
potential, grad(ηe) and grad(ηh), for electrons and holes through-
out the bulk material leading toward the contact areas30,33, as shown 
in the conceptual solar cell diagram in Fig. 2. Unfortunately, these 
parameters are difficult to extract experimentally and instead, in 
c-Si devices, a pair of equilibrium parameters are typically used 
to provide a simple, first-order approximation to model the solar 

cell operation under illumination: the saturation current contribu-
tion from contact recombination J0c to represent the flux of non-
collected charge carriers to the contact, and the contact resistivity 
ρc to represent the interface resistance presented to collected charge 
carriers. It follows that an effective, highly selective contact is one 
that minimizes both recombination (J0c) and resistive losses (ρc). It 
is important to be aware that this model of solar cell operation is not 
applicable to, for example, so-called non-ideal recombination where 
the value of J0c varies with illumination, and non-Ohmic contacts, 
in which the value of ρc cannot reliably be defined, and is, by defini-
tion, non-linear with applied voltage. In such cases, more detailed 
device modelling is required34.

A secondary parameter to be considered is the fraction of the 
solar cell’s surface area that is contacted, fc. In the case of a partial 
contact fraction (fc< 100%), a state-of-the-art surface passivation 
layer (for example, AlOx or SiNx) can cover the non-contacted area, 

Box 2 | Monofacial, bifacial and IBC silicon heterojunction devices

A relatively simple passivating contact device design is that of the 
silicon heterojunction cell (SHJ), which takes the doping outside 
of the c-Si absorber and places it within the contact structure in the 
form of n- and p-doped a-Si:H layers. The SHJ device architecture, 
like the Al-BSF cell, benefits from a conceptually facile fabrication 
procedure: a thin film of intrinsic a-Si:H is sandwiched between 
the silicon wafer and the doped a-Si:H layers in order to passivate 
surface defects, resulting in high operating voltages; a transpar-
ent conductive oxide (TCO; typically sputtered indium tin oxide, 
ITO) provides lateral charge transport to the screen printed metal 
fingers and acts as the ARC.

The most critical performance limitation of this design is 
parasitic absorption in the front TCO and a-Si:H layers, spurring 
research into alternative materials and device designs. One 
solution to this problem is to place all of the contacts on the rear 
side of the wafer in an IBC architecture. Alongside the increase 
in fabrication complexity, the transferral of the front contacts 
to the rear side of the cell places stricter requirements on both 
the electron and hole contact resistivities owing to their relative 
reduction in surface area. In addition, since the vast majority of 

excess carriers are photo-generated at the front of the wafer, high 
bulk lifetimes and state-of-the-art surface passivation is necessary 
to achieve the long diffusion lengths needed to maintain a high 
quantum efficiency.

A simpler strategy to improve the energy yield of conventional 
SHJ cells is to move toward bifacial designs. Bifacial cells can 
absorb light from both the front and the rear side of the device, 
thereby collecting the otherwise rejected environmental albedo 
radiation, resulting in a relative increase in sunlight absorbed 
within the cell, and so potentially higher energy output. Since the 
bifacial device absorbs albedo radiation from the rear side of the 
cell, the increases in energy yield from bifacial cells and modules 
are heavily dependent on location and environmental factors, 
as well as cell and module design. However, to further improve 
the short wavelength response, both the mono- and bifacial 
configurations, highly transparent contact materials, TCOs, and 
passivating interlayers are needed. Wide-bandgap, dopant-free 
materials are particularly promising transparent alternatives to the 
doped a-Si:H electron and hole transport layers (ETLs and HTLs), 
already showing increased currents on the device level.
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reducing the global J0 and increasing the device voltage. Indeed, 
it is the partial rear-contact fraction and rear-surface passivation 
that differentiates the Al-BSF from the PERC cell structure. This 
improvement in global J0 must be balanced against an increase in 
both the cell’s series resistance, due to the smaller contact area, and 
fabrication complexity.

A conceptually simple method to achieve carrier selectivity is to 
apply conductive layers (for example, metals) directly to the silicon 
wafer with asymmetrical work functions (ϕ) relative to the c-Si con-
duction and valence band edges. In this way, following Schottky–
Mott theory, the work function of the outer metal can be used to 
manipulate the surface potential of the underlying silicon wafer, 
with electrons (holes) accumulating at the low (high) work func-
tion interface, displacing minority carriers and reducing the J0c

34–36. 
With the proper choice of contact metal, the energetic barriers that 
impede the transfer of charge at the contact interface (that is, the 
Schottky barrier, ϕB) can be made sufficiently small to enable the 
formation of a low-resistance contact by thermionic emission at 
room temperature (Fig. 3b).

In practice, the formation of carrier-selective contacts via direct 
metallization is complicated by the existence of surface phenomena 
such as dangling bonds, metal induced gap states (MIGS) and inter-
face dipoles, which are not accounted for in Schottky–Mott theory26. 
As a consequence, the metal work function is unable to manipulate 
the concentration of carriers at the semiconductor surface to a sig-
nificant extent. This commonly results in the formation of a sig-
nificant Schottky barrier at the semiconductor surface regardless of 
the metal work function—behaviour which has been termed Fermi 

level pinning (FLP). The influence of FLP on the silicon surface, 
empirically demonstrated in plots of barrier height versus metal 
work function26,27, indicate a strong pinning effect that typically 
results in the depletion of charge carriers from the contacted silicon 
sub-surface, as shown in Fig. 3c, for most metal–silicon contacts.

To work within the constraints imposed by FLP on directly 
metallized surfaces, either the work function of the contact mate-
rial has to take extreme values to lower the barrier height, ΦB

37,38, or 
the width of the depletion region within the semiconductor, W, has 
to be narrowed (for example, via heavy doping) so that quantum 
mechanical tunnelling of charge carriers through the Schottky bar-
rier can occur, as shown in Fig. 3d. The efficacy of the heavy doping 
approach is shown in Fig. 3f which plots experimental ρc values ver-
sus surface doping concentration for p- and n-type surface doping 
(NA and ND). However, heavy doping results in an Auger-limited 
floor in the recombination at directly metallized contacts of J0c> 
~200 fA cm–2

, two-to-three orders of magnitude greater than state-
of-the-art passivated, non-metallized surfaces9,10,39. This is shown 
empirically in Fig. 3g which plots J0c as a function of sheet resis-
tance of an unpassivated heavily doped region (used here as a proxy 
for overall doping level in the diffused silicon sub-surface). With 
increased doping, and so decreasing sheet resistance, the J0c plateaus 
as the Auger recombination contribution (dashed lines in Fig. 3g) 
dominates the measured value, thereby constraining the selectivity 
of heavily doped, directly metallized contacts. An alternative (or 
complementary) route to contact formation is to apply a passivat-
ing interlayer between the semiconductor and contact material to 
‘de-pin’ the Fermi level—the passivating contact approach (Fig. 3e).
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Passivating contacts: materials and devices
Due to the inherent limitations of directly metallized, heavily doped 
contacts, considerable effort has been devoted towards the alter-
native concept of passivating contacts. Rather than invoking the 
compromises implicit to heavy doping, passivating contacts directly 
address recombination losses and FLP effects at the c-Si surface, 
most commonly by integrating a thin passivating interlayer between 
the c-Si surface and the outer electrode. The passivating interlayer 
not only passivates the c-Si surface but also physically separates the 
c-Si absorber from overlying metallic layers, which would other-
wise induce energy states within the silicon bandgap (via MIGS)40. 
Additionally, the suppression of FLP introduces a range of potential 
mechanisms that can be used to achieve carrier selectivity. These 
include the exploitation of asymmetries in band offsets, work func-
tions, tunnelling probabilities and charge-carrier mobilities at the 
c-Si/contact interface, as well as the use of energy-selective defect 
bands30,33,41,42. Thus far, the most successful and empirically realiz-
able of these strategies involves the use of heterocontacts with asym-
metric work functions on top of a thin passivating layer applied to 
the c-Si surface.

Passivating contacts also have several practical advantages 
over conventional contacting schemes. Compared to directly 
metallized, heavily doped contacts, passivating contacts are typi-
cally characterized by a very low J0c. Hence they can be applied 
in simple large-area (fc up to 100%) configurations, in contrast to  

heavily doped contacts43. The ability to apply passivating contacts 
in a large-area configuration not only simplifies device fabrication 
but also means that a higher ρc can be tolerated: values as high as 
~100 mΩcm2 can result in no significant PCE loss for full-area con-
tacts (see below)27,43. When applied to the rear of a cell in a so-called 
hybrid architecture (Fig. 4b), such passivating contact configura-
tions also simplify the current flows in the device to one dimen-
sion, eliminating lateral resistive losses18 and permitting the use of 
lower doping concentrations in the c-Si absorber. Finally, the high 
temperatures (≥750 oC) required to make heavily doped contacts, 
and the associated necessity for cleanliness throughout the fabrica-
tion process, are relaxed when dealing with many passivating con-
tact technologies, some of which can be deposited at or below 100 
oC44,45. However, lower fabrication temperatures, and the disabling 
of impurity gettering (for example, by removing the phosphorus 
diffusion step) in some passivating contact cell structures, require 
high purity wafers with stable bulk lifetimes in their pre-processed 
state. In addition, cells with passivating contacts on both sides of 
the device require a lateral charge transport mechanism, typically 
a TCO, as an alternative to a front-side diffused surface, which can 
adversely affect the Jsc.

Metal–insulator–semiconductor passivating contacts. Early 
attempts at contact passivation on c-Si solar cells took the form of 
metal–insulator–semiconductor (MIS) contacts. During the 1970s 
and 1980s a range of different structures were proposed for passiv-
ating contacts featuring different metals and passivating insulator 
layers36,46–49. A particularly striking example is that of the metal–
insulator–semiconductor–insulator–metal (MISIM) cell proposed 
by Green36 and later realized by Tarr et al47. This cell design mim-
ics the simple contacting arrangement described above—using two 
metals with asymmetric work functions as electron and hole con-
tacts—with a thin silicon oxide interlayer to physically separate the 
metal from the silicon wafer and passivate surface defects. However, 
a lack of affordable, high-work-function metals limited the appli-
cability of the MISIM cell structure. Instead, the MIS inversion 
layer (MIS-IL) cell structure received comparatively more atten-
tion. The archetype of the MIS-IL family, a p-type cell with a front 
electron MIS contact, and a rear Al-BSF hole contact, is shown in 
Fig. 4a. The front electron contact features a combination of ther-
mally evaporated Al and a tunnelable (~15 Å) thermally grown 
SiO2 layer50. The benefits of the MIS approach were demonstrated 
through improvements in Voc, as highlighted by Godfrey and Green 
in 1979, who reported a Voc of 655 mV, 20 mV higher than any pre-
viously reported c-Si device49. These MIS cells relied on a silicon 
monoxide ARC, deposited in the non-contacted areas, with a posi-
tive fixed-charge density to form an electron inversion layer at the 
surface. In this way, the fixed-charge density in the non-contacted 
areas performs a similar role to that of the metal work function in 
the contacted areas. The effect of the fixed charge density was later 
enhanced through the application of PECVD SiNx, and later Cs+ ion 
incorporation, to increase the magnitude of positive charge, aiding 
in the formation of the induced inversion layer51–53.

After reaching a peak PCE of 19.6% in 200154, further develop-
ment of the MIS-IL architecture stalled as other contact approaches 
garnered more research attention. One such example is the ‘metal–
insulator–NP’ (MINP) cell concept. MINP cells utilized a hybrid 
front contact, with an MIS contact formed on top of a lightly dop-
ant-diffused surface, with the intention of providing benefits in 
terms of lateral resistance and recombination55. Using a Ti/SiOx/c-
Si(n+) front MIS electron contact, this cell structure held the c-Si 
efficiency record for a short time in the 1980s becoming the first 
silicon device with a PCE over 18% (Fig. 1a)56. Since then, the use 
of MIS contacts on lightly diffused surfaces has been explored with 
different metals and insulators being featured in both n- and p-type 
cells with efficiencies above 21%57–59.
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are identified on the right-hand side of the cell schematic. b, The electron-
selective virtual surface summarizing the physical mechanisms that drive 
carrier selectivity (σ; grad(η)), the empirically probed values (ρc; J0c), and 
their general influence at the cell level (FF; Voc). A good charge carrier 
selective region will maximize the flow of the selected carrier (electrons in 
the electron-selective virtual surface above, represented by the thick arrow) 
at maximum power point (mpp), Je(mpp), and minimize the flow of the non-
selected carrier, that is, holes or Jh(mpp) (represented by the thin arrow), via 
the suppression of recombination.
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The external doping approach. A parallel stream of research initi-
ated in the 1980s involved the development of passivating contacts 
with polycrystalline silicon (poly-Si)60,61 and semi-insulating poly-
crystalline silicon (SIPOS) based material systems41,62. These inher-
ited strongly from earlier research into microelectronic devices63, 
and were typically composed of a thin SiOx layer sandwiched 
between the heavily-doped silicon-based outer layer and the c-Si 
wafer. By the mid-1980s doped poly-Si and SIPOS contacts with 
thin chemically and thermally grown interfacial SiOx layers were 
found to provide low J0c and ρc on c-Si62,64, to the extent that SIPOS 
based contacts were the first to demonstrate a Voc above 700 mV—a 
significant milestone at the time41.

The physical mechanism that determines the performance of 
poly-Si based contacts is complicated by in-diffusion of dopant 
atoms from the poly-Si into the c-Si wafer, which is almost uni-
versally reported for such contacts. This renders poly-Si contacts  

conceptually akin to the MINP, rather than MIS, design, although 
the dopant dose entering the c-Si absorber is typically low and 
hence does not significantly incur the deleterious heavy dop-
ing effects associated with the Al-BSF and PERC cells. The small 
amount of in-diffusion occurs during the high temperature steps 
(>700 oC) required for both SIPOS and poly-Si based contacts, in 
some cases assisted by the formation of pinholes in the thin SiOx 
layer65. As such, the oxide thickness, preparation method and ther-
mal budget all play critical roles in determining the contact prop-
erties66,67. Hydrogenation treatments of the SiOx/Si interface, for 
example, by capping the annealed poly-Si with hydrogen-rich SiNx 
or AlOx, exposure to hydrogen plasma, or via the release of hydro-
gen from the doped silicon film itself during the high temperature 
anneal, have been demonstrated to have a beneficial effect on the J0c, 
indicative of the substantive role of the defect passivation provided 
by the SiOx interlayer in the poly-Si contact structure68. A thorough 

101 102 103
10−14

10−13

10−12

10−11

Modelled (Erfc)
Surface J0 component
Auger J0 component
Total J0

101 102 10310−14

10−13

10−12

10−11

R
ec

om
bi

na
tio

n 
pa

ra
m

et
er

 J
0c

 (
A

 c
m

–2
)

n-typep-type

Sheet resistance,Rsh (Ω/◻)

Modelled (Gauss)
Surface J0 component
AugerJ0 component
Total J0

1016 1018 1020

10−6

10−4

10−2

100

Modelled:
TFE
FE

1016 1018 1020

10−6

10−4

10−2

100

C
on

ta
ct

 r
es

is
tiv

ity
, ρ

c 
(Ω

cm
2 )

Modelled:
TE
TFE

n-typep-type

Surface dopant concentration, Nd (cm−3)

Separate materials

Φm

Schottky–Mott alignment

CBM

VBM

Evac

CBM

VBM

Fermi level pinned interface Heavily-doped contact

CBM

Passivating contact

CBM

VBM

EF

E
ne

rg
y 

(e
V

)

E
ne

rg
y 

(e
V

)

E
ne

rg
y 

(e
V

)

E
ne

rg
y 

(e
V

)

E
ne

rg
y 

(e
V

)

CBM

VBM

 

h+ VBM

ΦB≠Φm−χSi

W
W

 

f g

a b c d e

χSi χSiΦm Φm χSi

Evac Evac

Φm χSi Φm χSi

Evac

EFEFEFEF

e−
e− e−

e−
ΦB=Φm−χSi

Evac

Evaporated
    In-line Al
    Static Al

Screen print
    Ag/Al
    Ag
    Al

Aerosol
    Ag/Ag plating

Screenprint
    Ag

Aerosol
    Ag/Ag plating

Evaporated
    Static Al

Electroless plated
     Ni
     Ni/Ag plating

Aluminum paste
    HCl-etched surface

Aluminium boron paste
    HCl-etched surface

Boron
    Thin metal

Phosphorus
    Thin metal
    Bare surface

Electroless plated
    Ni

h+h+

Fig. 3 | Motivation for, and characteristics of, heavily doped contacts. a–e, The Schottky–Mott relationship implies facile manipulation of the 
semiconductor surface potential (a, b) via the application of metals (black line in b–e) of appropriate work function (Φm) relative to the semiconductor’s 
electron affinity (χ). In practice, Fermi level pinning dampens this effect, often resulting in the depletion of charge carriers from the surface (c). To improve 
the selectivity of these contacts, either the width (W) of the barrier (ΦB) has to be narrowed to allow for the tunnelling process to occur (purple arrow), 
as in the heavy doping approach (d), or the Fermi level has to be ‘de-pinned’ (by applying a passivating interlayer, represented in white in e), such that the 
semiconductor’s surface potential can be influenced by the overlying contact material, facilitating tunnelling or thermionic emission (red arrow) through 
the contact structure: the passivating contact approach (e). f,g, The efficacy of heavy doping, in terms of ρc

27,185–202 (f) and J0c
9,10,203–206 (g). The ρc trend was 

modelled using thermionic emission, thermionic-field emission or field emission models (whichever is dominant at the specific dopant concentration)207, 
with the barrier heights (ΦB) and tunnelling effective masses (me) of ΦB = 0.35 eV and me = 0.4m0 on p-type surfaces, and ΦB = 0.6 eV and me = 0.3m0 on 
n-type surfaces. Contacts featuring Al doping are represented as a line, centred around the solid solubility limit of Al in Si at typical peak firing temperatures, 
to convey the uncertainty in surface doping concentration203. The J0c trend was modelled in EDNA2208,209, assuming an infinite surface recombination 
velocity and error (Erfc) and Gaussian (Gauss) functions for the phosphorus and boron diffusion profiles, respectively. The Auger and surface recombination 
components of the total J0 are represented by the dashed and dotted lines in g, respectively. For the empirical data in g, all values of J0c have been corrected 
to the same value of the intrinsic carrier density in silicon, ni = 8.59 x 109 cm–3, wherever possible. All data are tabulated in Supplementary Data 1; some 
data sets are a compilation from multiple sources. We note that some of the ρc results were obtained from samples in which a metal layer is fired through a 
dielectric layer(s).
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review of poly-Si passivating contacts, including deposition meth-
ods and hydrogenation treatments can be found in the review of 
Schmidt et al24.

Recent years have seen a revival in interest in poly-Si contacts for 
c-Si solar cells. The current state-of-the-art polysilicon contacts can 
be implemented via a range of different deposition and doping tech-
niques, exhibiting J0c< 5 fAcm2 and ρc< 2 mΩcm2 for both n-type 
and p-type contacts24,69,70. At the device level, a particularly promis-
ing hybrid structure, being developed by several groups, is shown 
in Fig. 4b which features a full-area n+ poly-Si rear contact and a 
boron diffused front hole contact19. This hybrid structure, some-
times referred to as the tunnel-oxide passivating contact (TOPCon) 
solar cell, was recently demonstrated at 25.7%19. Following shortly 
after this, an all poly-Si contacted IBC device was also demonstrated 
with a PCE of 26.1%, the highest efficiency achieved for a solar cell 
with both n+ and p+ poly-Si contacts71.

The early 1990s saw the development of a low temperature (≤200 oC)  
alternative passivating heterocontact utilizing a stack of intrinsic 
and doped hydrogenated a-Si:H layers, now known as the silicon 
heterojunction (SHJ) contact (Box 2). This structure was inherited  

from earlier research on a-Si:H/poly-Si tandem cells72, and the 
known surface passivation of c-Si by thin films of a-Si:H73. Work 
on SHJ cells was pioneered by Sanyo (later acquired by Panasonic) 
and trademarked as the ‘Heterojunction with intrinsic thin-layer’ 
or HIT cell74. Optimization of the SHJ structure over the following 
decade resulted in an efficiency increase from 14.5% to above 20% 
by the year 2000 (ref. 75), marking its competitiveness with conven-
tional dopant-diffused homojunction technologies.

Conceptually and practically, SHJ contacts, compared to the 
poly-Si/SiOx structure described above, more closely resemble 
the MIS passivating contact archetype: a passivating interlayer 
(intrinsic a-Si:H) alleviates FLP, allowing the outer layer (boron or 
phosphorus doped a-Si:H) to manipulate the c-Si surface poten-
tial—providing a selective conductive pathway for the collected 
carrier. Physically, the major difference between the SHJ and poly-
Si contacts is in the charge transport at the contact interface. For 
SHJ contacts, direct tunnelling from the silicon wafer into the 
doped a-Si:H layer is not a likely transport mechanism owing to 
the relative thickness of the intrinsic a-Si:H passivation layer (∼5 
nm), and so bulk current transport through the contact structure 
and thermal transport over energy barriers at the contact interfaces 
dominate ρc (refs. 76,77). In addition, unlike in the poly-Si contacts 
where a dopant tail is often present underneath the c-Si surface, 
the dopants in the SHJ contact structure are strictly confined to the 
outer a-Si:H layers, placing stringent requirements on the surface 
passivation provided by the intrinsic a-Si:H. The induced surface 
potential in the c-Si wafer therefore plays a more prominent role in 
the SHJ structure. Consequently, the low doping efficiency of boron 
in a-Si:H can lead to inadequate band bending at the c-Si surface, 
and so FF issues attributed to injection-dependent recombination 
at the hole contact78,79.

The most commonly ascribed shortcoming of the SHJ approach 
in terms of its ultimate performance is the parasitic absorption 
occurring in the front a-Si:H layers and TCO (typically ITO) that 
provides lateral charge transport80. Recent PCE improvements 
have consequently come from implementing the more complex 
IBC design, which places both contacts on the rear side of the cell, 
removing both the TCO and doped a-Si:H from the sun-facing side 
of the device17,20. Other strategies to reduce parasitic absorption 
without adopting the complex IBC design have focussed on thin-
ning the a-Si:H films81, diluting them with carbon and oxygen82–84, 
replacing the doped a-Si:H with nano-crystalline silicon and silicon 
oxide76,85,86, and investigating alternatives to ITO87. Indeed, numeri-
cal device modelling indicates that widening the bandgap of the 
deposited layers in the SHJ contact configuration can also have 
beneficial impacts on Voc and FF79. Regardless, the SHJ approach 
remains the most successful c-Si cell architecture in terms of effi-
ciency—first claiming the world record in 2014 (ref. 17) and continu-
ing to maintain this lead over the past 5 years20,21.

Towards dopant-free passivating contacts. A final passivating 
contact approach is the integration of dopant-free materials into 
the contact structure to replace the doped silicon layers or regions 
described above. The term ‘dopant-free’ used here refers to the 
avoidance of doped-silicon, an acknowledgment of the fact that 
many dopant-free materials are doped with native defects (or even 
extrinsically). These dopant-free materials include metal com-
pounds (most notably metal oxides), low-dimensional semicon-
ductors and organic materials. Driving the rapid growth of this 
research area, largely an extension of the work on MIS contacts, is 
the potential to overcome the performance limitations of existing 
passivating contacts. As reflected in the electronic band alignment 
diagram in Fig. 5, the use of silicon-based passivating contact films 
as electron and hole transport layers permits only a limited range 
of band gaps and work functions—which in turn limits the optical 
and electrical design of the contact. In contrast, materials such as 
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Fig. 4 | Solar cells featuring passivating contacts. a, The hybrid MIS cell, 
featuring a front electron MIS contact and a rear Al-BSF hole contact, is one 
of the original demonstrations of passivating contacts on c-Si solar cells. 
b, The TOPCon solar cell is another hybrid cell, featuring a front side boron 
diffused selective emitter for the hole contact and a rear phosphorus doped 
poly-Si electron contact. c, The DASH solar cell utilizes a set of dopant-free 
metal oxide and fluoride electron and hole transport layers to replace doped 
silicon layers.
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metal oxides introduce a more diverse materials space with a wider 
range of work functions outside of the confines of the c-Si band 
edges, as well as potentially more suitable optical characteristics for 
the front and rear sides of the device (such as wider bandgaps for 
increased transparency of high energy photons, reduced parasitic 
free-carrier absorption at the front and rear of the device, and a 
broader range of refractive indices for optimal front ARC and rear 
reflector formation). In addition, such materials can generally be 
deposited using simple, low-temperature, physical vapour deposi-
tion or even solution-based processing techniques—introducing 
potential reductions in fabrication costs over doped poly-Si or 
a-Si:H passivating contacts.

The most widely studied dopant-free contact material sub-
group are those based on metal oxides. At the electron contact, a 
number of n-type metal oxides with favourable theoretical band 
alignments, and in some cases silicon surface passivation, are being 
explored, for example, TiOx (refs. 88,89), NbOx (ref. 90), TaOx (ref. 91),  
GaOx (ref. 92), ZnOx (ref. 93), CsOx (ref. 94), some of which were pre-
viously identified during early semiconductor–insulator–semicon-
ductor research beginning in the 1970s95,96. The most prominent 
of the above metal oxide electron transport layers (ETLs) is TiOx, 
already being successfully integrated into hybrid cells (that is, with 
a front dopant diffusion), as full-area97 and partial-area rear con-
tacts (PRC)89 with an efficiency in excess of 23% recently demon-
strated98. Equivalent hole contact materials, p-type metal oxides 
with favourable valence band alignment with c-Si, are less abun-
dant than the n-type metal oxide ETLs, though some attention has 
been paid to CuOx (ref. 99). In fact, most research in recent years 
has focused on the n-type transition metal oxides, including MoOx 
(refs. 35,100–102), WOx (ref. 102), and VOx (ref. 103), which, as shown 
in Fig. 5, feature very high work functions (above 6.5 eV in the 
ideal case)104. Molybdenum oxide in particular has recently been 
integrated into PRC and full-area contact cells attaining PCEs of 
20.6%105 and 23.5% (J. Dréon, C. Ballif & M. Boccard, Influence of 
MoOx and (i)a-Si:H layer thickness on the properties and stabil-
ity of c-Si heterojunction solar cells, presented at the 2019 Spring 
Meeting of the European Materials Research Society).

In addition to metal oxides, a range of other metal compounds 
have been explored as contact materials for c-Si solar cells, including 
sulphides106, nitrides107,108, phosphides109, iodides110, carbonates111 
and fluorides35. Of note among these are the alkali and alkaline 

earth metal fluorides utilized in electron extraction, including LiF 
and MgF2. As shown in Fig. 5, after the evaporation of a metal over-
layer, typically Al, these contact structures exhibit very low work 
function values. This is commonly associated with the formation 
of a molecular dipole, which offsets the energy band alignment 
between the c-Si and outer electrode112. Owing to this, Al/LiF bi-
layer contacts, for example, achieve unusually low ρc on n-type c-Si 
and hence have been used directly as a PRC in an n-type cell—an 
architecture which was not previously possible due to the difficul-
ties of contacting n-type c-Si without dopants113. Other related con-
tacting techniques, such as the use of high-k dielectric bi-layers to 
generate interfacial dipoles114, or the exploration of chalcogenide 
passivation (S and Se) as alternatives to tunnel oxides115, remain 
largely unexplored in c-Si PV and could offer promising approaches 
to fabricate passivating contacts.

Two less developed dopant-free passivating contact subcatego-
ries are those formed by low-dimensional materials and thin films 
based on organic compounds and polymers. Devices featuring low-
dimensional carbon-based contacts, namely graphene116 and carbon 
nanotubes117, as well as the inorganic transition metal dichalcogen-
ides, such as MoS2 (ref. 118), have thus far failed to enable PCEs above 
15%, with most falling below 10%, owing largely to a lack of surface 
passivation. The use of small organic molecules or self-assembled 
monolayers have been comparatively more successful. On silicon, 
materials like poly (ethylene oxide) (PEO)119 and 8-hydroxyquino-
linolato-lithium (Liq)120 have been shown to reduce barrier heights 
and facilitate improvements in electron collection. Recently, mono-
layers of polar amino acids have also been shown to facilitate elec-
tron collection following direct Al metallization on silicon, with an 
efficiency of 17.5% having been demonstrated utilizing this contact-
ing approach as a full rear contact on an n-type Si wafer121. The most 
exciting results within this category however, have been achieved 
using polymer based contacts45,122,123, with PEDOT:PSS prov-
ing to be the most successful material. Full rear area PEDOT:PSS 
contacted cells have attained champion cell efficiencies of 20.6% 
using industrial cell fabrication processes, comparable to high 
performance Al-BSF cell efficiencies124. The higher Voc potential 
of the PEDOT:PSS devices over conventional Al-BSF cells further 
demonstrate the potential of PEDOT:PSS as a hole transport layer 
(HTL)125. However, parasitic absorption in the PEDOT:PSS, lim-
ited surface passivation comparable to other passivating contacts,  
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and questions over long term stability, all remain open issues which 
have inhibited the further adoption of this cell structure122.

The rapid improvement in dopant-free contacts is best exem-
plified by the impressive improvements in cells fabricated using a 
pair of such contacts. A schematic diagram of this cell architecture, 
referred to here as the dopant-free asymmetric heterocontact or 
DASH solar cell, is provided in Fig. 4c. Over the past 4 years, the 
efficiency of this cell concept has risen from 13.8% to 20.7%126,127 
and from 15.4% to 22.5%128,129 for both-sides-contacted and IBC 
cells, respectively, indicating the promise of this approach.

Comparison of contacting approaches
The recent explosive growth of passivating contacting techniques 
has provided a diverse range of material combinations, highlighted 
in the above sections, with differing ρc and J0c characteristics. While 
the general goal remains to simultaneously achieve low ρc and J0c, 
this is rarely achieved experimentally for newly developed struc-
tures, making it difficult to directly compare the efficacy of dissimi-
lar approaches to contact formation. As discussed above, the contact 
fraction fc is a complicating factor as it is an additional lever that 
can be used to trade-off the relative significance of J0c and ρc on the 
overall cell performance. Fortunately, disparate contacts can still be 
generally compared via graphical means. Figure 6a shows the simu-
lated ideal solar cell efficiency (coloured contours) resultant from 
changing the J0c and ρc of the rear contact. This plot is generated by 
calculating the optimum fc (black lines) for each J0c and ρc combina-
tion, so that the maximum performance is extracted out of each set 
of contact characteristics. Experimentalists can superimpose con-
tact data points on such plots to compare the efficacy of different 
contact structures. Several prominent results are included on this 
plot which are indicative of the technologies discussed above.

Figure 6a illustrates that contacts with vastly different charac-
teristics can achieve the same level of performance, provided fc can 
be altered arbitrarily. As can be seen from their position in Fig. 6a, 
directly metallized, heavily-doped contacts are characterized by low 
ρc and high J0c, and so a low fc is optimal. In contrast, many passiv-
ating contacts, for example the SHJ contacts, are characterized by 

a very low J0c and comparatively high ρc, and so a high optimal fc. 
This re-emphasizes the architectural advantages of the passivating 
contact technologies. Further, while the directly metallized, heav-
ily doped contacts are fundamentally constrained to their marked 
positions on this plot, the passivating contacts continue to improve 
with technological advancements. In terms of ρc and J0c, the most 
promising passivating contacts remain the SHJ and poly-Si technol-
ogies, as also reflected in the cell efficiency results discussed above. 
The dopant-free contacts continue to trail their more developed 
silicon-based counterparts, but have shown dramatic improvement 
in recent years. While the efficiency advantages of the passivating 
contact approaches are becoming more apparent, the remaining 
challenge in the industrial adoption of passivating contacts is over-
coming the inertia behind heavily doped technologies.

Similar conclusions can be drawn from compilations of cell-level 
experimental results. Figure 6b compares the remaining efficiency 
loss of cells utilizing heavily-doped directly-metallized contacts 
(black points) against various passivating contact technologies 
(coloured points)130. The ‘initiation’ date of each technology is esti-
mated following a similar approach to Altermatt et al.131, whereby 
the Goetzberger function is fitted to the historical progression of 
efficiency records for each technology. While the plot indicates that 
passivating contact technologies exhibit comparatively faster rates 
of development (in some cases rivalling the development rate of 
perovskite solar cells)131, this is likely attributable to greater invest-
ment in resources for research, continuous improvments in silicon 
wafer quality, metrology and processing equipment, and generally 
through the accumulated knowledge in the field of c-Si PV avail-
able at the time of development. Of course, the true advantage of 
passivating contact technologies is indeed their higher efficiency 
potential, as particularly evidenced by the SHJ and polysilicon IBC 
architectures, already reaching ~90% of the fundamental efficiency 
limit ηlim (equivalent to a PCE of ~26.4%)4. This is further supported 
by the practical efficiency limit of each technology, also fitted in the 
Goetzberger function, which is consistently higher for the passiv-
ating contact technologies. Interestingly, the both-sides-contacted 
SHJ cell technology cannot be well fitted by the Goetzberger  
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function, likely due to its successful patenting which hindered its 
proliferation throughout its early development, limiting the propa-
gation of accumulated knowledge gained through research into 
this particular device structure. The inset of Fig. 6b shows the his-
torical progression of both-sides-contacted SHJ cells, initially by 
Sanyo/Panasonic. Since the expiry of the core SHJ patents in the 
2008–2010 period, multiple laboratories have rapidly demonstrated 
high-efficiency both-sides-contacted SHJ cells, as best exemplified 
by Kaneka.

Future challenges and opportunities
While the incorporation of passivating contacts has enabled con-
siderable gains in record efficiencies in recent years, most of the 
passivating contact cell designs described above rely on process-
ing schemes that considerably differ from the current industrial 
mainstream c-Si PV technology. This can be a significant roadblock 
towards rapid, large-scale industrial adoption. In this context, what 
is needed in the immediate future is a low-threshold upgrade of 
industrial c-Si PV manufacturing that only marginally affects exist-
ing production facilities, in order to minimize cost-of-ownership, 
learning, and re-tooling related risks. The most straightforward way 
to do so is by following the same philosophy that underlies the cur-
rent shift from Al-BSF to PERC cells: address the recombination 
losses at the hole-collecting rear contacts in industrial silicon solar 
cells. For this, a simple hole-collecting passivating contact that can 
withstand the firing of screen printed metal contacts, as applied in 
industry, is currently sought after. To this end, p-type polysilicon 
or silicon-rich silicon carbide are promising material candidates, 
though issues related to the compatibility with conventional high 
temperature Ag screen print metallization still remain84.

From a longer perspective, a shift in the cell production from 
p-type to n-type wafers is expected due to the higher tolerance of 
phosphorus-doped silicon to oxygen and common metallic impu-
rities compared to boron-doped silicon3. This transition is likely 
to prompt greater adoption of passivating contact technologies 
both due to the departure from conventional p-type silicon solar 
cell processing procedures, especially the Al alloying process, and 
the increased benefit of passivating contacts on high bulk lifetime 
n-type wafers.

Further, as mentioned above, passivating contact technologies 
naturally provide greater flexibility in cell architecture. Full-area 
passivating contacts can easily be formed into bifacial designs where 
light is collected from both sides of the absorber, potentially improv-
ing the energy yield and thus lowering the levelized cost of energy 
for a given installation. The lower surface recombination also allows 
greater flexibility in the junction position. For example, an n-type 
rear junction cell with a front electron passivating contact can uti-
lize a more resistive, but more transparent, TCO since the wafer can 
act as a lateral conductive channel for electrons132. Ultimately how-
ever, to meet the challenges faced by the increasing expansion of 
the PV industry towards terawatt-scale production133, devices with 
passivating contacts featuring ITO may be threatened by the pro-
duction scarcity, potential supply shocks, and ultimately, the relative 
lack of abundance of indium in the earth’s crust134. Indium-free SHJ 
and equivalent cell architectures are therefore of great interest135, 
and may be required if they are to meet predicted future market 
demand for PV. In addition, greatly reducing or eliminating Ag con-
sumption in PV manufacturing is a general imperative for the c-Si 
community as a whole133. Beyond these potential constraints, the 
parasitic absorption in passivating contact devices can be further 
lowered by introducing wide bandgap metal oxides to replace the 
doped silicon ETLs (Fig. 5).

Alternatively, placing both passivating contacts at the rear-side 
of the device in an IBC configuration is arguably the ultimate cell 
design for high performance c-Si PV. However, to become an indus-
trial reality, process and patterning simplification are of critical  

importance. Since passivating contact materials are typically  
fabricated by chemical or physical vapour deposition, or via solu-
tion processing, interesting new routes can be found to this end, 
enabling bottom-up concepts such as the tunnel-junction IBC 
cell136. Fully passivating contact c-Si technology is also anticipated 
to be the most attractive choice for the high-insolation, hot-climate 
market, as such cells feature the lowest temperature coefficient and 
so can result in higher energy yields137.

Finally, to overcome the fast approaching 29.4% single-junction 
theoretical PCE limit of c-Si PV4, passivating contact c-Si cells will 
arguably be the key driver as a bottom cell technology in a tandem 
cell configuration. This is thanks to the fact that such devices feature 
the highest operating voltages, even under reduced illumination con-
ditions, such as in tandems; the passivating contacts can be tailored 
to provide excellent internal light reflection138; and the top cell filters 
out the short wavelength light, relaxing constraints on the bottom 
cell’s blue response. In addition, the top contacts can easily be adapted 
into tunnel junctions, which are needed for monolithic 2-terminal 
tandem integration. This point has already been demonstrated using 
expensive III-V top cells, both for 4-terminal139 and monolithic 2-ter-
minal tandem cells140. For true industrial adoption it is likely that a 
cheaper top cell technology is needed. For this, perovskite solar cells, 
having excellent tuneable optoelectronic properties, are attractive 
candidates and have been integrated with c-Si bottom cells in both 
2- and 4- terminal configurations, with rapidly improving efficien-
cies. In particular, most research groups working on the 2-terminal 
configuration have favoured the use of c-Si solar cells with passivat-
ing contacts due to the above described benefits141,142.

Through the increasing trend towards passivating contacts, 
c-Si PV joins a larger group of optoelectronic devices that sepa-
rate charge carriers via contact interfaces rather than with absorber 
doping. Many existing technologies, such as organic solar cells 
and light emitting diodes, which cannot easily implement func-
tional impurity doping approaches, have already developed a 
suite of charge carrier selective contacts. Crystalline silicon stands 
to inherit knowledge from these fields, assisting to expedite the 
rapid uptake within mainstream PV. In addition, the accumulated 
knowledge relating to surface and contact passivation in c-Si can 
be of potential benefit to other material systems, as already demon-
strated in CdTe143 and CIGS devices144. Interestingly, highly efficient 
perovskite solar cells also increasingly feature passivating contacts, 
which prove to be effective in not only increasing the operating volt-
ages, but also quenching the hysteresis effects in the current–voltage 
response145,146. For the mainstream c-Si PV industry, it is foresee-
able that the physical constraints imposed by heavy doping will 
ultimately reshape the manufacturing landscape towards lost cost, 
high efficiency passivating contact solar cell designs, which will be 
a further driver towards the continued penetration of PVs into the 
global energy market.

Data availability
The data from plots in Figs. 1a,b, 3f,g, 5 and 6a are available in the 
Supplementary Data.
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