Hole Selective MoO$_x$ Contact for Silicon Solar Cells

Corsin Battaglia, $^{\dagger, \ddagger}$ Xingtian Yin, $^{\dagger, \ddagger, \S}$ Maxwell Zheng, $^{\dagger, \ddagger}$ Ian D. Sharp, ‡ Teresa Chen, † Stephen McDonnell, § Angelica Azcatl, § Carlo Carraro, $^{\#}$ Biwu Ma, $^{\ddagger, \S}$ Raya Maboudian, $^{\#}$ Robert M. Wallace, § and Ali Javey$^{\S, \ddagger, \S}$

†Electrical Engineering and Computer Sciences Department, University of California, Berkeley, California 94720, United States
‡Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§Electronic Materials Research Laboratory, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi, People’s Republic of China
$^{\#}$Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§Materials Science and Engineering, University of Texas, Dallas, Texas 75083, United States
§Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States

ABSTRACT: Using an ultrathin (~15 nm in thickness) molybdenum oxide (MoO$_x$, $x < 3$) layer as a transparent hole selective contact to n-type silicon, we demonstrate a room-temperature processed oxide/silicon solar cell with a power conversion efficiency of 14.3%. While MoO$_x$ is commonly considered to be a semiconductor with a band gap of 3.3 eV, from X-ray photoelectron spectroscopy we show that MoO$_x$ may be considered to behave as a high workfunction metal with a low density of states at the Fermi level originating from the tail of an oxygen vacancy derived defect band located inside the band gap. Specifically, in the absence of carbon contamination, we measure a work function potential of ~6.6 eV, which is significantly higher than that of all elemental metals. Our results on the archetypical semiconductor silicon demonstrate the use of nm-thick transition metal oxides as a simple and versatile pathway for dopant-free contacts to inorganic semiconductors. This work has important implications toward enabling a novel class of junctionless devices with applications for solar cells, light-emitting diodes, photodetectors, and transistors.

KEYWORDS: Junctionless solar cells, silicon photovoltaics, heterojunctions, dopant-free contact, molybdenum trioxide

Hybrid organic/inorganic solar cells combining an organic hole transport layer such as PEDOT:PSS, spiro-OMeTAD, or P3HT with n-type crystalline silicon have generated considerable interest as an alternative to traditional silicon photovoltaics with the potential to reduce cost by adopting room-temperature solution processing.1–5 Power conversion efficiencies have been rising steadily over the past three years due to improvements of the organic hole transport materials, interface properties, and light management and have recently reached up to 13%.2 However, further efficiency improvements are mandatory to render hybrid solar cells economically viable.

Hybrid organic/silicon devices now routinely achieve open-circuit voltages (V_{oc}) close to 600 mV, and focus has moved toward exploring various nanotexturing schemes, including metal-assisted chemical etching and reactive ion etching, to improve the short-circuit current density (J_{sc}).1–3 However, nanotexturing often leads to difficulties with conformal coating of the organic hole contact.2,4,5 In addition, the air and ultraviolet stability of polymers remains a major concern.6,7 Here we introduce a solar cell architecture using a transparent substoichiometric molybdenum trioxide (MoO$_x$, $x < 3$) with a sub-100 nm thickness as a hole-selective, dopant-free contact to n-type silicon. Transition metal oxides have been studied extensively as hole contacts for organic solar cells, organic light emitting diodes, and organic thin film transistors and have led to significant improvements in device performance and stability.8–10 To our surprise, transition metal oxides have not yet been employed in conjunction with n-type silicon absorbers. In this work, we demonstrate a room-temperature processed MoO$_x$/silicon solar cell with a V_{oc} of 580 mV implementing an industrially proven silicon pyramid texture for maximum light absorption reaching an efficiency of 14.3%. Using X-ray photoelectron spectroscopy (XPS), we further demonstrate that much of the controversy around the band alignment and electronic behavior of MoO$_x$5,9 can be resolved by interpreting...
MoO$_x$ as a high workfunction metal with a low density of states at the Fermi level originating from a defect band inside the band gap.

MoO$_x$ thin films with a thickness of 40 nm were thermally evaporated onto flat n-type silicon (100) substrates with a carrier concentration of 10^{15} cm$^{-3}$ from stoichiometric MoO$_3$ powder at a rate of 0.5 Å/s from an Al$_2$O$_3$ coated W boat at a pressure in the mid 10$^{-6}$ mbar range. The Al$_2$O$_3$ coating is important to guarantee a controlled evaporation rate. The substrates were etched in hydrofluoric acid right before loading into the evaporator. The electronic band structure was characterized via XPS using monochromated Al K$_\alpha$ X-rays with a photon energy of 1486.7 eV at a pressure in the low 10$^{-9}$ to mid 10$^{-10}$ mbar range.

To study the valence band region and workfunction of MoO$_x$, Al$_\alpha$ photons were chosen over the more conventional He I line with 21.2 eV radiation in order to benefit from the longer inelastic mean free path of photoelectrons resulting in increased probing depth (5–10 nm judging from the visibility of Si 2p photoelectrons from the silicon substrate) and consequently enhanced bulk sensitivity.

Figure 1a and b show X-ray diffraction and Raman scattering data of a MoO$_3$ single crystal, grown by heating MoO$_3$ powder to 800 °C in a quartz tube furnace, while flowing O$_2$/Ar = 20%:80%, indicating sharp diffraction peaks and vibrational modes respectively. No such peaks are observed for the evaporated MoO$_x$ thin films, pointing toward an amorphous structure as shown in Figure 1b. An earlier X-ray absorption fine structure investigation confirms that evaporated MoO$_x$ films retain the local octahedral coordination of the Mo cation, but confirms the absence of long-range order. In addition, octahedra in amorphous films are predominantly connected via vertices (not edges) to their six neighboring octahedra, resulting in a total of three O atoms per Mo cation.

We now focus on the implications of the amorphous structure on the valence or oxidation state of the Mo ions. The bottom curve in Figure 2a presents the photoelectron spectrum of the Mo 3d core level of the evaporated MoO$_x$ film. The core level is split into the 3$d^{5/2}$ and 3$d^{3/2}$ doublet centered at 232.8 and 236.0 eV, respectively, in good agreement with previous work. We identify these two main components with the fully oxidized Mo$^{6+}$ valence state corresponding to an intact octahedral coordination consisting of six O atoms.

To obtain a satisfactory fit to the experimental XPS data, a second doublet at lower binding energy is required, which we attribute to the partial oxidation of the Mo ions. This could be due to the presence of Mo$^{5+}$ ions, which have a lower binding energy compared to Mo$^{6+}$ ions. The presence of Mo$^{5+}$ ions is supported by the XPS data, which shows a peak at 229 eV, which corresponds to Mo$^{5+}$ ions.

Figure 2. Effect of 30 s rapid thermal annealing in N$_2$ or O$_2$ ambient on the Mo 3d core level (a and b) and valence band region (c and d) of evaporated MoO$_x$ films. In (a) and (b) the individual fitted components are shown in color along with a Shirley background.
identify as the Mo\(^{5+}\) valence state, corresponding to an oxygen vacancy at the vertex of an octahedron in the amorphous network. As the nearest neighbor correlation is preserved in the amorphous octahedron network, this reduced Mo state is expected to exhibit a relatively well-defined center energy smeared out to second order by the variations in local bond lengths and angles caused by the amorphous environment.

The valence state of the Mo cations can be reduced further by rapid thermal annealing in ambient N\(_2\) as demonstrated in the stacked spectra in Figure 2a. With increasing annealing temperature the intensity of the Mo\(^{5+}\) state increases significantly, which is consistent with the creation of additional oxygen vacancies. After annealing at 500 °C, we observe an additional shoulder in the Mo 3d core level at an even lower binding energy, which we identify as the Mo\(^{4+}\) valence state corresponding to an octahedron with two missing O atoms. The formation of oxygen vacancies is reversible by annealing the amorphous MoO\(_3\) network in ambient O\(_2\) leading to a suppression of the Mo\(^{5+}\) and Mo\(^{4+}\) states as can be seen from Figure 2b. Annealing at high temperature leads to a partial crystallization of the MoO\(_3\) films as witnessed by Raman spectroscopy (not shown), which can be avoided by reduction or oxidation at room temperature in atomic hydrogen or ozone environment respectively.

We now turn to the discussion of the valence band spectrum of the MoO\(_3\) films shown in Figure 2c and d. The valence band spectra, which were also acquired using Al K\(_\alpha\) photons, are dominated by the mostly O 2p derived bands extending from 3.2 eV to a higher binding energy. The edge of this O 2p derived band does not shift appreciably upon creation or annihilation of oxygen vacancies indicating that oxygen vacancies are not acting as shallow level donors in MoO\(_3\). As the nearest neighbor correlation is preserved in the amorphous octahedron network; i.e. it is associated with Mo 4d electrons which remain loosely bound to the Mo atoms.

With increasing annealing temperature in N\(_2\), we further observe a broadening and a shift of the center of the defect band toward the Fermi energy (E\(_F\)) at zero binding energy to a point where the band gap is completely filled up to the Fermi level. It is interesting to note that while fully stoichiometric MoO\(_3\) with only Mo\(^{6+}\) is insulating, MoO\(_3\) with only Mo\(^{4+}\) is known to be metallic and exhibits an unambiguous metallic Fermi-Dirac edge at zero binding energy.\(^{20}\) As the detection limit for XPS is in the 1% atomic ratio range, we hypothesize that a small but finite density of states at the Fermi level below the detection limit of XPS is also present for the as-deposited MoO\(_3\) film, even if the apparent defect density is much lower.

To strengthen our hypothesis, we compare in Figure 3a XPS valence spectra of evaporated MoO\(_3\) before and after annealing at 500 °C in N\(_2\) with valence spectra of indium tin oxide (ITO) (I\(_2\)O\(_5\)/SnO\(_2\) = 90%/10%). The ITO films were sputtered without and with oxygen in the argon plasma to tune the electron concentration to 10\(^{11}\) and 10\(^{20}\) cm\(^{-3}\), respectively, as measured by the Hall effect. The region near the Fermi level for each spectrum is replotted with a scaling factor of 10 to allow easier comparison. The spectrum of a gold reference exhibiting a clear Fermi-Dirac step is also shown with a scaling factor of 0.1. While a metallic Fermi-Dirac edge of the ITO samples, already observed in ref 21 falls just within the detection limit of XPS, we do not observe any appreciable spectral weight at the Fermi level of the as-deposited MoO\(_3\) films. Consequently we argue that spectral weight at the Fermi level corresponding to a Hall carrier density in the lower 10\(^{19}\) cm\(^{-3}\) range or below cannot be detected by standard XPS. However, after annealing in N\(_2\) at 500 °C, a significant density of states at the Fermi level of MoO\(_3\) becomes apparent indicating metallic behavior, which we attribute to the appearance of Mo\(^{4+}\) ions. Thus it is reasonable to assume that minute amounts of Mo\(^{4+}\) ions are already present in the evaporated film and can cause metallic behavior.

For the ITO samples, the shift of the valence band maximum toward higher binding energy confirms that the Fermi level moves deeper into the conduction band with increasing carrier density. The creation of oxygen vacancies therefore dopes ITO with electrons. Interestingly such a shift is not observed for MoO\(_3\), as a function of defect level intensity, indicating that the Fermi level does not move within the MoO\(_3\) host when oxygen vacancies are created. Instead the band gap becomes filled with additional Mo 4d states.

Figure 3b shows secondary electron cut-offs of the photoelectron spectra, from which we extract the workfunction by extrapolating the linear part of the cutoff to zero intensity and subtracting this energy from the Al K\(_\alpha\) X-ray excitation energy of 1486.7 eV (the spectra are corrected for an externally applied bias of −9.87 V on the sample, which accelerates photoelectrons away from the sample into the detector). The workfunction for the Au reference sputter cleaned in vacuo is 5.1 eV, in good agreement with values found in literature.\(^{22}\) For the evaporated MoO\(_3\) film transferred in air to the XPS chamber we obtain 5.7 eV. It is well-
known that the workfunction of MoO$_3$ is very sensitive to air exposure. To explore the workfunction potential of evaporated MoO$_3$, we exposed the films to UV-ozone (UV–O$_3$) at 900 mbar for 30 min. From XPS, we see a reduction of adventitious carbon contamination (not shown) and a dramatic increase of the exposure. To explore the workfunction potential of evaporated MoO$_3$, the workfunction remains sufficiently high to bring the Fermi level of MoO$_3$ close to the position of the valence band maximum of silicon located at 5.1 eV. MoO$_3$ can thus be used as a selective contact for a MoO$_3$/silicon solar cell.

Solar cells were fabricated by deposition of a 15 nm thick MoO$_3$ layer on a potassium hydroxide (KOH) textured silicon wafer right after removal of the native oxide in dilute hydrofluoric (HF) acid (see Figure 4a and b). After air exposure, the MoO$_3$ layer was covered with 55 nm of sputtered ITO deposited in an Ar plasma at 10$^{-2}$ mbar and an evaporated 100 nm thick Ag grid with a finger width of 11 μm and pitch of 490 μm was patterned via photolithography and lift-off. We chose a hydrogenated amorphous silicon passivated ITO/Ag back contact capable of open-circuit voltages of up to 720 mV26 in order to study the open-circuit voltage potential of the MoO$_3$/Si frontside heterojunction interface with minimum recombination at the backside. The finalized cells were annealed at 150 °C in N$_2$ for 10 min to improve the conductivity of the ITO electrode.27

Figure 4c presents the J–V curves for solar cells patterned and masked to an area of 5 mm \times 5 mm and measured under standard test conditions (1000 W/m2, air mass 1.5 global (AM1.5$_g$) spectrum and 25 °C). With an open-circuit voltage (V_{oc}) of 580 mV, a short-circuit current (I_{sc}) of 37.8 mA/cm2 (including 2% grid shading) and a fill factor (FF) of 65%, a power conversion efficiency of 14.3% is obtained. The external quantum efficiency (EQE) and reflectance (R, presented as $1 - R$), measured with an integrating sphere, are shown in Figure 4d along with the dark and light J–V curves in a semilogarithmic plot in the inset.

While our simple cell design with the unpassivated MoO$_3$/silicon interface cannot rival the performance of state-of-the-art silicon heterojunction solar cells, which integrate a sophisticated amorphous silicon passivation scheme,18 it clearly illustrates the concept of a transparent dopant-free selective hole contact to n-type silicon. With a demonstrated V_{oc} potential of 580 mV, our MoO$_3$/silicon solar cell nevertheless reaches values that are as high as those for the best-in-class hybrid organic/silicon solar cells (see Table S1). A significantly higher I_{sc} is obtained due to the traditional pyramid texture in conjunction with a carefully optimized oxide layer thickness (see Supporting Information for more details) for minimum reflection losses which outperforms nanotextures obtained by metal-assisted etching or reactive ion etching. MoO$_3$/silicon consequently reaches an efficiency higher than that of hybrid organic/silicon solar cells.

Various potential improvements of our cell design can be envisioned including the implementation of a passivation layer with local MoO$_3$ contact openings or the addition of an intrinsic amorphous silicon passivation layer in conjunction with a MoO$_3$ contact to improve V_{oc}. The FF could be improved by optimizing the defect state density in the band gap of MoO$_3$ or by depositing an ultrathin highly conformal MoO$_3$ layer by atomic layer deposition. A higher I_{sc} could be achieved by improving the ITO transparency and reducing shadowing due to the Ag finger grid. MoO$_3$ could also be replaced by other transition metal oxides such as NiO$_x$, VO$_x$, or WO$_x$ which have proven to function as hole contacts in organic electronics.8 Furthermore MoO$_3$ along with ITO and other transparent conductive oxides were shown to integrate a sophisticated silicon interface cannot rival the performance of state-of-the-art silicon heterojunction solar cells, which integrate a sophisticated amorphous silicon passivation scheme.18 It clearly illustrates the concept of a transparent dopant-free selective hole contact to n-type silicon. With a demonstrated V_{oc} potential of 580 mV, our MoO$_3$/silicon solar cell nevertheless reaches values that are as high as those for the best-in-class hybrid organic/silicon solar cells (see Table S1). A significantly higher I_{sc} is obtained due to the traditional pyramid texture in conjunction with a carefully optimized oxide layer thickness (see Supporting Information for more details) for minimum reflection losses which outperforms nanotextures obtained by metal-assisted etching or reactive ion etching. MoO$_3$/silicon consequently reaches an efficiency higher than that of hybrid organic/silicon solar cells.

In conclusion, we demonstrated a simple MoO$_3$/silicon solar cell with an efficiency of 14.3%. With a high workfunction exceeding those of elemental metals, MoO$_3$ presents an important opportunity for hole contact in not only inorganic semiconductor materials with low lying valence band maxima including III–V semiconductors such as InP or GaN but also layered transition metal dichalcogenide semiconductors as well as oxide- and carbon-based nanomaterials.

ASSOCIATED CONTENT

Supporting Information
Compilation of hybrid organic/silicon solar cell performance characteristics. Optimization of ITO/MoO$_3$ thicknesses. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: ajavey@eecs.berkeley.edu.
Author Contributions

\(\checkmark \) Authors with equal contribution.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

MoO₃ processing and characterization were funded by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet centers sponsored by MARCO and DARPA. Photovoltaic device fabrication and characterization were funded by the Bay Area Photovoltaics Consortium (BAPVC). Some of the XPS measurements were performed at JCAP; this material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. We thank L. Barraud, S. De Wolf, and C. Ballif from the Ecole Polytechnique Federale de Lausanne (EPFL) for providing textured silicon wafers with passivated back contacts. C.B. acknowledges support from the Zeno Karl Schindler Foundation. A.J. acknowledges support from the BK21 Plus program at Sunchon National University.

REFERENCES

(1) See Table S1 for a compilation of device performance characteristics.

Hole selective MoOₓ contact for silicon solar cells

Corsin Battaglia¹,²,#, Xingtian Yin¹,²,³,#, Maxwell Zheng¹,², Ian D. Sharp⁴, Teresa Chen⁵, Stephen McDonnell⁶, Angelica Azcatl⁶, Carlo Carraro⁷, Roya Maboudian⁷, Robert. M. Wallace⁶ and Ali Javey¹,²,*

¹Electrical Engineering and Computer Sciences Department, University of California, Berkeley, CA 94720

²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

³Electronic Materials Research Laboratory, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi, People’s Republic of China

⁴Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

⁵Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

⁶Materials Science and Engineering, University of Texas, Dallas, TX 75083

⁷Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720

#Authors with equal contribution

*Corresponding Author: ajavey@eecs.berkeley.edu

Supporting information
Table S1: Compilation of hybrid organic/silicon solar cell performance characteristics, also included are results for graphene/silicon and carbon nanotubes/silicon solar cells.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Hole contact</th>
<th>Texture</th>
<th>V_{oc} [mV]</th>
<th>J_{sc} [mA/cm2]</th>
<th>FF [%]</th>
<th>Efficiency [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>MoO$_3$/ITO</td>
<td>KOH</td>
<td>580</td>
<td>37.8</td>
<td>65.0</td>
<td>14.3</td>
</tr>
<tr>
<td>Yu et al., ACS Nano, 2013 [1]</td>
<td>TAPC/PEDOT:PSS</td>
<td>AgNO$_3$+HF</td>
<td>540</td>
<td>34.8</td>
<td>69.5</td>
<td>13.0</td>
</tr>
<tr>
<td>Nagamatsu et al., IEEE IPV 2013 [2]</td>
<td>PEDOT:PSS</td>
<td>None</td>
<td>570</td>
<td>27.8</td>
<td>73.0</td>
<td>11.7</td>
</tr>
<tr>
<td>Wei et al., Nano Lett., 2013 [3]</td>
<td>PEDOT:PSS</td>
<td>KOH/Au +H$_2$O$_2$+HF</td>
<td>520</td>
<td>34.5</td>
<td>64.1</td>
<td>11.5</td>
</tr>
<tr>
<td>He, Appl. Phys. Lett., 2011 [9]</td>
<td>Spiro-OMeTAD/PEDOT:PSS</td>
<td>AgNO$_3$+HF</td>
<td>570</td>
<td>30.9</td>
<td>58.8</td>
<td>10.3</td>
</tr>
<tr>
<td>He et al., ACS Appl. Mater. Inter., 2012 [12]</td>
<td>Spiro-OMeTAD/PEDOT:PSS</td>
<td>AgNO$_3$+HF</td>
<td>570</td>
<td>30.7</td>
<td>56.6</td>
<td>9.9</td>
</tr>
<tr>
<td>Authors</td>
<td>Layer Configuration</td>
<td>Solvent</td>
<td>E (V)</td>
<td>Voc (V)</td>
<td>Jsc (mA/cm²)</td>
<td>FF (%)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>Shen et al., JACS, 2011</td>
<td>Spiro-OMeTAD/PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>527</td>
<td>31.3</td>
<td>58.8</td>
<td>9.7</td>
</tr>
<tr>
<td>Zhang et al., J. Mat.</td>
<td>P3HT/PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>457</td>
<td>37.6</td>
<td>54</td>
<td>9.2</td>
</tr>
<tr>
<td>Chem., 2012 [16]</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>530</td>
<td>26.3</td>
<td>64.2</td>
<td>9.0</td>
</tr>
<tr>
<td>He et al., IEEE Electron</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>500</td>
<td>29.8</td>
<td>58</td>
<td>8.7</td>
</tr>
<tr>
<td>Device Lett., 2011 [17]</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>532</td>
<td>24.2</td>
<td>65.1</td>
<td>8.4</td>
</tr>
<tr>
<td>Zhang et al., Appl. Phys.</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>497</td>
<td>30.7</td>
<td>48</td>
<td>7.3</td>
</tr>
<tr>
<td>Lett., 2013 [18]</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>460</td>
<td>21.6</td>
<td>64</td>
<td>6.4</td>
</tr>
<tr>
<td>Syu et al., Sol. Energy</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>548</td>
<td>17.9</td>
<td>60.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Mat. & Sol. Cells, 2012</td>
<td>PEDOT:SS</td>
<td>AgNO₃+HF</td>
<td>421</td>
<td>26.2</td>
<td>53</td>
<td>5.9</td>
</tr>
<tr>
<td>Zhang et al., Nanotechno</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>570</td>
<td>13.6</td>
<td>71.9</td>
<td>5.6</td>
</tr>
<tr>
<td>ology 2012 [19]</td>
<td>Graphene</td>
<td>none</td>
<td>495</td>
<td>17.22</td>
<td>51</td>
<td>4.4</td>
</tr>
<tr>
<td>Lu et al., Nanoscale,</td>
<td>Graphene/ HNO₃</td>
<td>ICP</td>
<td>455</td>
<td>16.6</td>
<td>42.9</td>
<td>3.2</td>
</tr>
<tr>
<td>2011 [20]</td>
<td>PEDOT:PSPS</td>
<td>AgNO₃+HF</td>
<td>346</td>
<td>18.9</td>
<td>35.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Cui et al., J. Mat. Chem.</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>420~480</td>
<td>4~6.5</td>
<td>45~56</td>
<td>1~1.7</td>
</tr>
<tr>
<td>A, 2013 [22]</td>
<td>Graphene</td>
<td>none</td>
<td>455</td>
<td>16.6</td>
<td>42.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Zhang et al., Chem. Mat.</td>
<td>P3HT/PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>570</td>
<td>13.6</td>
<td>71.9</td>
<td>5.6</td>
</tr>
<tr>
<td>A, 2013 [23]</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>495</td>
<td>17.22</td>
<td>51</td>
<td>4.4</td>
</tr>
<tr>
<td>He et al., Appl. Phys.</td>
<td>PEDOT:PSPS</td>
<td>AgNO₃+HF</td>
<td>346</td>
<td>18.9</td>
<td>35.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Feng et al., Nanoscale</td>
<td>PEDOT:PSPS</td>
<td>AgNO₃+HF</td>
<td>346</td>
<td>18.9</td>
<td>35.2</td>
<td>2.3</td>
</tr>
<tr>
<td>2012 [25]</td>
<td>Graphene</td>
<td>none</td>
<td>420~480</td>
<td>4~6.5</td>
<td>45~56</td>
<td>1~1.7</td>
</tr>
<tr>
<td>Liu et al., Nanoscale</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>548</td>
<td>17.9</td>
<td>60.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Res. Lett., 2013 [26]</td>
<td>PEDOT:PSS</td>
<td>AgNO₃+HF</td>
<td>455</td>
<td>16.6</td>
<td>42.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Tsai et al., ACS Nano,</td>
<td>P3HT</td>
<td>AgNO₃+HF</td>
<td>346</td>
<td>18.9</td>
<td>35.2</td>
<td>2.3</td>
</tr>
<tr>
<td>2011, [27]</td>
<td>Graphene</td>
<td>none</td>
<td>420~480</td>
<td>4~6.5</td>
<td>45~56</td>
<td>1~1.7</td>
</tr>
<tr>
<td>Li et al., Adv Mater.,</td>
<td>Graphene</td>
<td>none</td>
<td>420~480</td>
<td>4~6.5</td>
<td>45~56</td>
<td>1~1.7</td>
</tr>
<tr>
<td>2010 [28]</td>
<td>Graphene</td>
<td>none</td>
<td>420~480</td>
<td>4~6.5</td>
<td>45~56</td>
<td>1~1.7</td>
</tr>
</tbody>
</table>
Optimization of MoO$_x$/ITO thicknesses

The front reflectance of a cell with a double layer antireflection coating is given by the following expression [29]:

$$ R = \frac{A}{B} $$

where

$$ A = r_1^2 + r_2^2 + r_3^2 + r_1 r_2 r_3 (1 + r_3^2) \cdot \cos(2 \cdot \theta_1) + 2 r_1 r_3 \cdot \cos(2 \cdot (\theta_1 + \theta_2)) + 2 r_1 r_2 r_3 \cdot \cos(2 \cdot (\theta_1 - \theta_2)) $$

$$ B = 1 + r_1^2 + r_2^2 + r_3^2 + 2 r_1 r_2 (1 + r_3^2) \cdot \cos(2 \cdot \theta_1) + 2 r_2 r_3 (1 + r_1^2) \cdot \cos(2 \cdot \theta_2) + 2 r_1 r_3 \cdot \cos(2 \cdot (\theta_1 - \theta_2)) $$

with

$$ r_1 = (n_0 - n_1)/(n_0 + n_1) $$

$$ r_2 = (n_1 - n_2)/(n_1 + n_2) $$

$$ r_3 = (n_2 - n_3)/(n_2 + n_3) $$

$$ \theta_1 = (2 \cdot \pi \cdot n_1 \cdot t_1/\lambda) $$

$$ \theta_2 = (2 \cdot \pi \cdot n_2 \cdot t_2/\lambda) $$

n_1, n_2, n_3 are the refractive indices of ITO, MoO$_x$ and Si in our case, t_1 and t_2 the ITO and MoO$_x$ thicknesses and λ the wavelength. The refractive indices of ITO and MoO$_x$ are almost identical, so that we can assume that $r_2 \approx 0$. In this case, A and B simplify to

$$ A = r_1^2 + r_3^2 + 2 r_1 r_3 \cdot \cos(2 \cdot (\theta_1 + \theta_2)) $$

$$ B = 1 + r_3^2 + 2 r_1 r_3 \cdot \cos(2 \cdot (\theta_1 + \theta_2)) $$

From R, we can determine the absorbance $A = 1 - R$. Convolution of A with the global air mass 1.5 spectrum and integration over all wavelength λ, gives an estimation of the maximum achievable short-circuit current density (J_{sc}) assuming no parasitic light absorption, unity carrier collection and total light trapping. Estimated J_{sc} values as a function of the thicknesses of ITO and MoO$_x$ are shown in Fig. S1.
FIG. S1. Estimated \(J_{sc} \) values for a flat silicon cell with ITO (t\(_1\)) and MoO\(_x\) (t\(_2\)) layers.

For the pyramidal texture shown in Fig. 4a, most incoming light rays, which are reflected off a first time at a pyramid, hit subsequently a neighboring pyramid and undergo a second reflection event. Thus the effective reflectance of a pyramidal textured surface is given to a first approximation by \(R_{\text{pyramid}} = R_{\text{flat}}^2 \) [30, 31]. This renders the \(J_{sc} \) much more tolerant to variations in layer thicknesses.

FIG. S2. Estimated \(J_{sc} \) values for a pyramidal textured silicon cell with ITO (t\(_1\)) and MoO\(_x\) (t\(_2\)) layers.
Due to the increased surface area of the pyramids compared to the flat surface, the evaporated/sputtered thicknesses of the antireflection layer on the pyramids must be scaled by a factor \(1/\cos(54.7^\circ) \approx 1.7\) compared to the flat surface in order to obtain the same effective thickness on the pyramids.

In practice, it is best to optimize the ITO and MoO\(_x\) thicknesses directly on flat silicon. Ideally a dark blue color is observed typically at a total oxide thickness of 65 nm to 70 nm (see Fig. S3). The thicknesses are then scaled with a factor of 1.7 and transferred to the pyramid structure.

FIG. S3 Optimization of ITO and MoO\(_x\) thicknesses on silicon wafer. An ideal dark blue color is observed at 65-70 nm total oxide thickness.
References

