Role of TiO₂ Surface Passivation on Improving the Performance of p-InP Photocathodes

Yongjing Lin, Rehan Kapadia, Jinhui Yang, Maxwell Zheng, Kevin Chen, Mark Hettick, Xingtian Yin, Corsin Battaglia, Ian D. Sharp, Joel W. Ager, and Ali Javey

ABSTRACT: The role of TiO₂ thin films deposited by atomic layer deposition on p-InP photocathodes used for solar hydrogen generation was examined. It was found that, in addition to its previously reported corrosion protection role, the large valence band offset between TiO₂ and InP creates an energy barrier for holes reaching the surface. Also, the conduction band of TiO₂ is well-aligned with that of InP. The combination of these two effects creates an electron-selective contact with low interface recombination. Under simulated solar illumination in HClO₄ aqueous electrolyte, an onset potential of >800 mV vs RHE was achieved, which is the highest yet reported for an InP photocathode.

INTRODUCTION

Photosynthesis is a process adopted by nature to harvest solar energy by direct conversion into chemical energy. Replicating this natural process more efficiently is a promising means to tackle the energy challenge and has received extensive scientific attention. Specifically, artificial photosynthesis would enable the production of hydrogen from water reduction or liquid fuels, such as methanol, from carbon dioxide reduction. Several semiconductors have been reported as photocathode materials to the electrolyte and could open up opportunities of utilizing semiconductors that would otherwise be unstable in aqueous electrolyte. However, many of the prior studies have focused on deposition of TiO₂ on a buried semiconductor junction such as Cu₂O/Al₂O₃ or n+p-Si that provides the photovoltage for water reduction. Here, we are interested in understanding the role of TiO₂ deposition directly on p-type photocathodes. Since n-type TiO₂ film has a large valence band offset with most small-band gap p-type semiconductors, it should form a type II junctions and simplify the fabrication process of highly efficient photocathodes.

A number of semiconductors have been reported as promising photocathodes for water reduction, including Si, InP, WSe₂, Cu₂O, GaP, and CulnGaSe₂. The energy conversion efficiency of some of these photocathodes has exceeded 10%. To enhance stability, metal oxide layers have been employed to protect the photoelectrodes. In particular, titanium dioxide grown by atomic layer deposition (ALD) has been successfully demonstrated as the protection layer on several photocathodes, owing to the chemical stability of titanium dioxide and the high uniformity and conformal nature of the ALD process. For example, Lee et al. demonstrated stable operation of p-InP nanopillars coated with a thin layer of TiO₂, delivering a high conversion efficiency of ~14% under simulated AM 1.5G illumination, which is among the highest reported to date. Paracchino et al. showed significantly improved stability of Cu₂O/aluminum-doped ZnO photocathodes with thin TiO₂ layer by ALD for up to 10 h. Seger et al. reported stable operation of n’p Si photocathode with TiO₂ protection layer for hydrogen generation for up to 2 weeks.

These examples suggest that TiO₂ could in general serve as a protection layer to conduct photogenerated electrons from photocathode materials to the electrolyte and could open up opportunities of utilizing semiconductors that would otherwise be unstable in aqueous electrolyte. However, many of the prior studies have focused on deposition of TiO₂ on a buried semiconductor junction such as Cu₂O/Al₂O₃ or n+p-Si that provides the photovoltage for water reduction. Here, we are interested in understanding the role of TiO₂ deposition directly on p-type photocathodes. Since n-type TiO₂ film has a large valence band offset with most small-band gap p-type semiconductors, it should form a type II junctions and simplify the fabrication process of highly efficient photocathodes.

Here, the effect of TiO₂ thin films on the carrier dynamics, surface recombination velocity, and device performance of InP photocathodes were examined by using photoelectrochemical measurements and impedance spectroscopy. A drastic enhancement of performance for devices coated with a thin optimized TiO₂ layer was observed. Specifically, it is found that in addition to the previously reported protection role, TiO₂ serves as an effective hole blocking layer on the surface of p-InP while...
allowing the transport of electrons. This favorable surface band-alignment forms a type II heterojunction and leads to surface depletion of holes, thereby drastically reducing the surface recombination velocity of carriers and leading to a 200 mV anodic shift of the onset potential for water reduction. Notably, the p-InP/TiO2 photocathode with optimal ALD growth process conditions has an onset potential for water reduction of over 800 mV, the highest reported value for InP photocathodes. This represents a major improvement in the PEC cell performance since the onset potential is a key figure of merit for photoelectrodes, similar to the open circuit voltage in solar cells.

EXPERIMENTAL METHODS

Fabrication of p-InP/TiO2 Photocathodes. The p-InP wafer, with Zn as p-type dopant, was purchased from Wafertech and used as received. A 10 nm Zn/90 nm Au film stack was sputtered on the back of the substrate followed by annealing at 400 °C for 2 min with forming gas flowing to form an ohmic back contact. We used two ALD systems to make conformal TiO2 coatings. We did not remove the native oxide of InP prior to deposition by, for example, etching in acid. The thickness of the ALD-grown TiO2 layers was measured using spectroscopic ellipsometry (Jobin Yvon Technology). Titanium dioxide was deposited using a Picosun ALD system at a substrate temperature of 250 °C. Titanium isopropoxide and water were used as Ti and oxygen precursors. The TiO2 deposition rate was about 0.025 nm/cycle. The thickness of TiO2 thin film was measured using spectroscopic ellipsometry (Jobin Yvon Technology). The deposition of N-TiO2 used tetrakis-(dimethylamido)titanium and water as precursors in an Arrandance ALD system at 250 °C. The deposition rate is 0.04 nm/cycles. A 2 nm thick platinum layer was sputtered as the hydrogen evolution catalyst on p-InP samples.

Photoelectrochemical Measurements. The photoelectrochemical performance of InP/TiO2 or InP was measured using a three-electrode setup, with a Ag/AgCl reference electrode, and a Pt mesh counter electrode and with InP with and without TiO2 as the working electrode. The electrolyte was 1.0 M HClO4 solution purged with forming gas before and during measurement to maintain a well-defined solution potential, with pH value of 0.3. A solar simulator with AM 1.5 monochromatic light was calibrated with a Si photodiode (Oriel) as the light source. The intensity of the passed photogenerated charge at certain time, assuming the elementary charge, \(e \), is the effective density of states in the conduction band and \(\varepsilon \) is the carrier density of n-InP. Similarly, the energy difference between the conduction band edge and Fermi level can be calculated from eq 3:

\[
E_c - E_f = kT e \ln \left(\frac{N_f}{N_A} \right)
\]

MS plot can be used to calculate the carrier density based on the following equation:

\[
k = \frac{-2}{ee_0N}
\]

in which the negative sign is used to calculate the carrier density of p-type semiconductor, positive sign is used for n-type semiconductor, \(k \) is the slope of MS plot, \(e \) is the elementary charge, \(e_0 \) is the vacuum permittivity, \(\varepsilon \) is the dielectric constant of the measured semiconductor (\(\varepsilon \) is 12.5 for p-InP and 75 for TiO2) and \(N \) is the carrier density. For InP, the energy difference between the valence band edge and Fermi level can be calculated from eq 2:

\[
E_v - E_f = \frac{kT}{e} \ln \left(\frac{N_e}{N_D} \right)
\]

in which \(N_e \) is the effective density of states in the conduction band and \(N_D \) is the donor density of TiO2. The conduction band edge of p-InP and valence band edge of n-TiO2 can then be calculated from their optical band gaps.

RESULTS AND DISCUSSION

Figure 1 compares the photoelectrochemical performance of p-type InP photocathodes with and without TiO2 coating. A p-type InP (hole concentration of 3–5 × 1017 cm\(^{-3}\)) wafer was employed as a photocathode for water splitting because of its 1.35 eV band gap, which is a good match to the solar spectrum and its high achievable energy conversion efficiency.14,18 A 10 nm thick TiO2 thin film was deposited on p-InP by ALD using titanium isopropoxide and water as precursors at 250 °C. The thickness and composition of ALD deposited TiO2 was uniform on the wafer. Figure S1 and S2, Supporting Information) A 2 nm thick platinum layer was sputtered on both samples as a hydrogen evolution catalyst. Detailed information about the processing and the photoelectrochemical measurement procedures can be found in the Experimental Section. As shown in Figure 1a, the photocurrent onset potential of bare InP, where the water reduction begins, is measured at 0.63 V vs reversible hydrogen electrode (RHE), which is comparable to previous result on bare InP wafers.15,16 In contrast, InP with a 10 nm TiO2 thin film can reduce water at a more positive bias of 0.81 V vs RHE, representing a 200 mV anodic shift. Photoelectrochemical measurement of control sample with TiO2 film deposited on FTO suggests that TiO2 does not function as light absorber for the improvement. Figure S3) This result is different from previous result of utilizing TiO2 to protect n + p Si for water reduction, in which the deposition of TiO2 did not significantly enhance the photovoltage since the photovoltage is determined by the buried Si homojunction.26 The photocurrent density of InP/TiO2 reaches 25.5 mA/cm\(^2\) at the reversible hydrogen potential, which is comparable to the 24 mA/cm\(^2\) obtained on a bare InP electrode. It is noted that the photovoltage achieved by InP/TiO2 is the highest among InP
N-TiO₂ coating, p-InP has a photovoltage of 0.58 V for water deposited using titanium isopropoxide and water. With a 10 nm ALD-deposited TiO₂ layer was measured. However, it was also found that controlling growth chemistry and temperature of TiO₂ by ALD is critical to achieve the high photovoltage for water reduction for p-InP photocathodes. The dramatic difference of photovoltages for water splitting (see comparison in Table S1) and also significantly higher than other photocathodes with comparable band gaps. The photovoltage of InP/TiO₂ photocathode is at least 250 mV higher than p-type Si photocathodes, and about 100 mV higher than p-Cu₂O photocathode. Photocathodes with such high photovoltage can provide a large portion of the 1.23 V required for the water splitting. The performance advantage of InP/TiO₂ photocathode is further highlighted in Figure 1b, where chronoamperometry measurements of both samples at large positive biases are plotted. Steady photocurrent densities of 9.9 and 19.3 mA/cm² were measured at 0.7 and 0.6 V vs RHE on the InP/TiO₂ sample, dramatically higher than the bare InP cathode. Faradaic efficiency measurements performed with the p-InP/TiO₂ photocathodes show that the yield of H₂ is over 95%.

A 200 mV higher photovoltage for water reduction for p-InP with an ALD-deposited TiO₂ layer was measured. However, it was also found that controlling growth chemistry and temperature of TiO₂ by ALD is critical to achieve the high photovoltage. As a comparison, TiO₂ was deposited on p-InP substrates using tetrakis(dimethylamido)titanium and water as precursors at the same temperature. N-TiO₂ denotes the TiO₂ film deposited by tetrakis(dimethylamido)titanium since this precursor contains Ti=N bonds. O-TiO₂ denotes the TiO₂ film deposited using titanium isopropoxide and water. With a 10 nm N-TiO₂ coating, p-InP has a photovoltage of 0.58 V for water reduction, as shown in Figure 2a. The photovoltage is 0.23 V lower than the same InP wafer with TiO₂ deposited using titanium isopropoxide as precursors and even slightly lower than the bare InP photocathodes. The dramatic difference of photocathodes for water splitting (see comparison in Table S1) and also significantly higher than other photocathodes with comparable band gaps. The photovoltage of InP/TiO₂ photocathode is at least 250 mV higher than p-type Si photocathodes, and about 100 mV higher than p-Cu₂O photocathode. Photocathodes with such high photovoltage can provide a large portion of the 1.23 V required for the water splitting. The performance advantage of InP/TiO₂ photocathode is further highlighted in Figure 1b, where chronoamperometry measurements of both samples at large positive biases are plotted. Steady photocurrent densities of 9.9 and 19.3 mA/cm² were measured at 0.7 and 0.6 V vs RHE on the InP/TiO₂ sample, dramatically higher than the bare InP cathode. Faradaic efficiency measurements performed with the p-InP/TiO₂ photocathodes show that the yield of H₂ is over 95%.

PEC performance of p-InP with various TiO₂ layers can be attributed to the different physical and electronic properties of those TiO₂ films obtained using different process conditions. As revealed by X-ray photoelectron spectroscopy in Figure 2b, the XPS Ti 2p peaks at binding energies of 458.5 and 464.2 eV are assigned to the Ti⁴⁺ valence state in both samples. For N-TiO₂ sample, additional XPS peaks with lower binding energy of 456.8 eV (green fit curve) are assigned to Ti³⁺. The N-TiO₂ film deposited at this temperature is substoichiometric, with reduced Ti³⁺ species observed on the surface. In contrast, only Ti⁴⁺ features were observed for the TiO₂ film with titanium isopropoxide as the precursor. Evidently, the Ti³⁺ sites enhance electron recombination at the surface compared to both the control wafers and the wafers coated with stoichiometric TiO₂, which reduces the onset potential. The result clearly highlights the importance of controlling growth chemistry of TiO₂ by ALD to achieve efficient water reduction. The optimal temperature is different depending on the precursor used. To avoid confusion, we only present the result of the stoichiometric TiO₂ film grown using titanium isopropoxide as the precursor in the following discussion.

The onset potential reported here is higher than our previous result of p-InP/TiO₂ photocathodes due to the optimized surface treatment and TiO₂ deposition conditions. Specifically, for the cathodes prepared in this work, we did not remove the native oxide layer on InP prior to ALD of TiO₂. Through experiments, we found that the devices with an interfacial native oxide layer yield higher photovoltage. This observation is consistent with previous reports highlighting the importance of native oxide for yielding a low trap density for the closely similar InAs/oxide interfaces.

The incident photon to charge conversion efficiency (IPCE) of p-InP devices with and without TiO₂ was also characterized and compared, as plotted in Figure 3. At an applied bias of 0.2 V vs RHE, the IPCE value is 70% to 80% between 800 and 400 nm.

Figure 1. Photoelectrochemical characterization performed in 1 M HClO₄ solution of p-InP with and without TiO₂ coating by atomic layer deposition. Pt was used as the hydrogen evolution catalyst in both cases. (a) J-V plots of bare p-InP (orange trace) and p-InP/TiO₂ (green trace) photocathodes measured in 1 M HClO₄ solution under simulated solar light. The intensity was adjusted to 100 mW/cm². (b) Chronoamperometry measurement of bare p-InP and p-InP/TiO₂ at applied biases of 0.7 and 0.6 V vs RHE under chopped light illumination.

Figure 2. Comparison of p-InP/TiO₂ with different growth chemistry. O-TiO₂ denotes the film deposited using titanium isopropoxide discussed previously and N-TiO₂ denotes the film deposited using tetrakis(dimethylamido)titanium. (a) Photoelectrochemical characterization of p-InP with 10 nm TiO₂ grown from different precursors. (b) XPS characterization of N-TiO₂ and O-TiO₂.
The measurements were performed under low illumination intensity, where surface effects are more prominent. Without TiO2 coating, the bare InP cathode shows IPCE lower than 30% at the same bias, much lower than the InP/TiO2 photocathode. We note that the improvement of quantum efficiency by adding TiO2 layer is distinct at all wavelengths above the band gap. However, there is a distinct improvement in the short wavelength range. Since photons with shorter wavelength are absorbed closer to the surface due to higher absorption coefficient, the conversion efficiency of those photons is therefore more surface sensitive. The IPCE measurement thus suggests that adding TiO2 layer improves surface properties for minority carrier extraction.

Both J-V and IPCE measurements depict the improved performance of InP photocathodes with TiO2 coating by ALD. The effect of TiO2 on InP devices can be attributed to the formation of type II heterojunction with proper band alignment, leading to a reduced surface recombination velocity of photocarriers. It has also been suggested that surface recombination is one of the primary factors contributing to the low photovoltage observed on several III–V semiconductors.33–35 To explore this effect in more detail, the energy band alignment at the InP/TiO2 and liquid interfaces was first examined. The flat band potentials and carrier concentrations of a TiO2 layer (thickness 50 nm) deposited by ALD on an FTO substrate and a p-InP wafer were experimentally obtained by the Mott–Schottky (MS) method, in which the space charge capacitance was measured as a function of applied bias. As shown in Figure 4a, the negative slope of the MS plot shows the p-type nature of the InP wafer. A carrier density of 3.2×10^{17} cm$^{-3}$ was extracted from the slope of a linear fit to the MS data, which is in good agreement with the carrier density of 5×10^{17} cm$^{-3}$ provided by the supplier. On the other hand, ALD-grown TiO2 exhibits a positive slope in the MS plot (Figure 4b), which is indicative of n-type character. An electron density of 3.0×10^{18} cm$^{-3}$ is extracted from the MS slope. Additionally, the flat band potential, which equals the Fermi level of the electrode before reaching equilibrium, of both InP and n-TiO2 can be determined from the MS plots. By extrapolating the $1/C^2$–V linear plot to the voltage axis intercept, the flat band potential of InP and TiO2 were determined to be 0.98 and 0.04 V vs RHE, respectively. The optical band gap of the TiO2 film grown by ALD was measured to be 3.1 eV by analysis of a Tauc plot of the optical absorption spectrum. With the measured flat band potentials, carrier densities and the optical band gap, the energy band diagram of InP and TiO2 in HClO4 solution before and after equilibrium can be constructed, as shown in Figure 4c. Immediately seen from the energy diagram is that a type II heterojunction is formed between p-InP and n-TiO2 layer. TiO2 acts as a selective contact for electron transport for water reduction and as a hole blocking layer. Specifically, the conduction band edges of TiO2 and InP are aligned such that the transport of photogenerated electrons from InP to the TiO2 layer is energetically favorable. On the other hand, the large valence band offset between InP and TiO2, as shown in Figure 4c, creates a large potential barrier $\phi_b \sim 1.9$ eV for holes, which leads to electrostatic repulsion of holes from the surface. Reduction of hole concentration at the surface leads to lower surface recombination since for recombination to take place both carrier types must be present. A reduced surface recombination directly leads to a higher IPCE and photovoltage. The hole blocking nature of TiO2 on p-InP is further proved by the nonohmic I–V measurement of a p-InP/n-TiO2/ITO solid state device (Figure S5). It should be noted that similar band offsets are commonly utilized in high performance Si and III–V solar cells by the use of proper heterojunctions with the same goal of selectively collecting one carrier type while repelling the other.31 Additionally, reduced surface states density as a result of the amorphous TiO2 coating is another possibility that could attribute to the lower surface recombination in InP.

In order to further study the effect of TiO2 on surface recombination, the open circuit voltage (V_{oc}) of p-InP with and without TiO2 as a function of incident light intensity was measured. The V_{oc} is directly dependent on the magnitude of
nonradiative recombination. As shown in Figure 5, the InP/TiO2 sample exhibits significantly higher V_{oc} for all light illumination intensities as compared to the bare InP sample. Specifically, under low intensity illumination (e.g., $< \sim 3$ mW/cm2), the V_{oc} difference between p-InP photocathode with and without TiO$_2$ layer is ~ 0.37 V. The V_{oc} difference is ~ 0.2 V at high illumination intensities ($> \sim 10$ mW/cm2). This behavior is expected since it is known that the V_{oc} loss due to trap-assisted recombination processes, such as surface recombination, is dependent on the incident light intensity. Specifically, the V_{oc} loss is less severe at high illumination intensities since a large portion of the trap states are already filled by the photogenerated carriers, thereby reducing the effective nonradiative recombination rate.

Quantitatively, the dependence of V_{oc} on the illumination intensity is given by the following equation:

$$V_{oc} = \frac{n kT}{q} \ln \left(\frac{I_1}{I_0} \right)$$

where I_1 is the photocurrent density and is proportional to the light intensity, I_0 is the dark current density and n is the ideality factor. When the ideality factor equals 1, the recombination process is fully governed by radiative recombination. Deviation from the ideal case, such as introduction of nonradiative recombination pathways (e.g., surface recombination), increases the value of n. The ideality factor of the InP/TiO$_2$ photocathode is 1.3 from the data in Figure 4, which depicts a near ideal behavior. On the other hand, for the bare InP photocathode, the ideality factor is ~ 1.5 when the light intensity is > 10 mW/cm2 and 3.2 when the intensity is < 3 mW/cm2. These higher values of ideality factor of bare InP electrodes and their light intensity dependence clearly depict the significant nonradiative recombination processes present in bare InP electrodes and supports our claim of reduced surface recombination by TiO$_2$ coating.

Since surface recombination is one of the dominant processes that limit the photoelectrochemical performance of high-quality crystalline semiconductors, such as InP,34 the idea of utilizing TiO$_2$ not just as the protection layer, but also as a hole blocking layer to reduce surface recombination could be generally applicable to improve the photocathode’s performance. Utilizing TiO$_2$ layer as a selective electron contact could also eliminate the need of fabricating solid homojunction for highly efficient photocathodes.36 This approach of using stable metal oxides with suitable band alignment to form a heterojunction and reduce surface recombination is also particularly important when employing nanostructured photocathodes,36,37 which typically exhibits more significant surface recombination owing to the higher surface to volume ratio and is more challenging to fabricate homojunctions.

CONCLUSIONS

In conclusion, an InP/TiO$_2$ photocathode for efficient water reduction was demonstrated, with photovoltage over 800 mV vs reversible hydrogen potential. In addition to the previously reported role as the surface protection layer, the thin ALD TiO$_2$ layer provides the proper surface band-bending for selectively collecting minority electrons while repelling holes. This surface depletion of holes reduces the surface recombination velocity of InP photocathodes. Since surface recombination is a primary efficiency limiting factor in many high-quality crystalline photocathodes, this work of using a TiO$_2$ layer to reduce surface recombination and enhance photovoltage represents an important advance to achieve efficient solar hydrogen production.

ASSOCIATED CONTENT

Supporting Information

Photovoltage comparison of different InP photocathodes, thickness and composition uniformity of TiO$_2$ film, faradaic efficiency of p-InP/TiO$_2$ photocathode, I–V measurement of p-InP/TiO$_2$/ITO solid device, and Mott–Schottky plot of p-InP/TiO$_2$ in electrolyte. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

* (A.J.) E-mail: ajavey@eecs.berkeley.edu. Telephone: 510-643-7263.

* (J.A.W.) E-mail: jwager@lbl.gov. Telephone: 510-486-6715.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993. A.J. acknowledges support from the WCU program at Sunchon National University.

REFERENCES

DOI: 10.1021/jp5107313

The Role of TiO$_2$ Surface Passivation on Improving the Performance of p-InP Photocathodes

Yongjing Lin,†‡∆ Rehan Kapadia, ‡∆ Jinhui Yang,†‡∆ Maxwell Zheng, ‡∆ Kevin Chen, ‡∆ Mark Hettick, †‡∆ Xingtian Yin, †‡∆ Corsin Battaglia, ‡∆ Ian D. Sharp, ‡∆§ Joel W. Ager, †‡∆ Ali Javey, †‡∆*

† Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
‡ Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, CA 94720
∆ Materials Sciences Division, Lawrence Berkeley National Laboratory, CA 94720
§ Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720

* E-mail: ajavey@eecs.berkeley.edu, jwager@lbl.gov
Phone: 510-643-7263, 510-486-6715

Supporting Information

1. Comparison of reported photovoltage of InP photocathode for solar water reduction

<table>
<thead>
<tr>
<th>Author</th>
<th>Substrate</th>
<th>Doping Level</th>
<th>Catalyst</th>
<th>Photovoltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>p-InP (100) with ALD TiO$_2$</td>
<td>3~5*1017 cm3</td>
<td>Pt</td>
<td>0.81</td>
</tr>
<tr>
<td>Heller et al. 19811</td>
<td>Zn-doped p-InP</td>
<td>2.4*1017 cm3</td>
<td>Ru</td>
<td>0.58</td>
</tr>
<tr>
<td>Kobayashi et al. 19912</td>
<td>p-InP (100)</td>
<td>2*1018 cm3</td>
<td>Pt</td>
<td>0.68</td>
</tr>
<tr>
<td>Aharon-Shlom et al. 19823</td>
<td>p-InP (100)</td>
<td>2.4*1017 cm3</td>
<td>Rh</td>
<td>0.65</td>
</tr>
<tr>
<td>Lee et al. 20124</td>
<td>p-InP (100) nanopillar</td>
<td>\sim5*1017 cm3</td>
<td>Ru</td>
<td>0.73</td>
</tr>
<tr>
<td>Shaner et al. 20135</td>
<td>MOVPE grown p-InP/7nm n-InO$_x$P$_y$</td>
<td>3*1017 cm3</td>
<td>Rh</td>
<td>0.7</td>
</tr>
<tr>
<td>Munoz et al. 20136</td>
<td>3 um MOVPE p-InP film</td>
<td>3*1017 cm3</td>
<td>Rh</td>
<td>0.7</td>
</tr>
</tbody>
</table>
2. Uniformity of deposited TiO$_2$ film

The thickness of TiO$_2$ film by deposited by ALD was measured by xy scanning spectroscopic ellipsometry. The film thickness is highly uniform across a 4 inch wafer, as shown in Figure S1. XPS analysis in Fig. S2, also shows that the film is compositionally uniform.

![Figure S1](image1.png)

Figure S1: thickness uniformity of TiO$_2$ deposited by ALD on a 4 inch Silicon wafer.

![Figure S2](image2.png)

Figure S2: XPS analysis of TiO$_2$ film on InP wafer at different positions on the wafer. Both the survey scan and Ti 2p fine scan demonstrate the uniformity of the deposition, in agreement with the thickness measurement.

3. Photoelectrochemical performance of TiO$_2$ film on FTO substrate

The photoelectrochemical performance of 10 nm TiO$_2$ thin film deposited on FTO substrate was measured and plotted in Figure S3. Since TiO$_2$ is an n-type semiconductor, only anodic photocurrent with current density less than 0.2 mA/cm2 was measured. The data clearly suggests that TiO$_2$ does not function as light absorber for the improvement.
4. Faradaic efficiency of p-InP/TiO$_2$ photocathode

5. I-V measurement of p-InP/TiO$_2$/ITO solid device

To further explore the hole blocking nature of TiO$_2$ on p-InP, we fabricated a solid device with ITO as top contact and measure the I-V characteristic of the device. N-type InP was also used for comparison. The non-ohmic I-V characteristic of p-InP/TiO$_2$/ITO clearly suggests the hole blocking nature of TiO$_2$.
6. Mott-Schottky plot of p-InP/TiO$_2$ in electrolyte

As a control, the Mott-Schottky plot of InP/TiO$_2$ was also measured. As discussed in the main text, p-InP and n-TiO$_2$ forms a heterojunction with proper band alignment for water reduction reaction.

![Mott-Schottky plot of p-InP/TiO$_2$ in 1M HClO$_4$ solution.](image)
References