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SUMMARY

Thermal runaway in lithium-ion batteries poses a major safety risk. Prior to thermal runaway, cells vent
their internal gases as the internal pressure rises, with hydrogen detectable at trace levels of tens to
hundreds parts per million. Here, we report that selective trace hydrogen detection, using chemically sen-
sitive field-effect transistors, provides reliable early warning of imminent thermal runaway across multiple
cell types and abuse conditions. Systematic abuse tests on commercial cylindrical nickel-cobalt-
aluminum (NCA) cathode, pouch nickel-magnanese-cobalt (NMC) cathode, and prismatic lithium-iron-
phosphate (LFP) cathode cells at 10%-100% state of charge show that hydrogen is consistently detected
in vented gases before thermal runaway. Trace hydrogen detection proves more reliable than conven-
tional temperature, voltage, and pressure sensors. When cell abuse is stopped upon early hydrogen
detection, thermal runaway is successfully prevented in all tested cases. These findings establish that

trace hydrogen sensing provides early, actionable intelligence to prevent thermal runaway.

INTRODUCTION

The major safety concern with lithium-ion cells is the possibil-
ity of thermal runaway '™ (Figure 1). Lithium-ion cells stressed
by high temperature, overcharging, mechanical deformation,
or defects can develop internal exothermic chemical reac-
tions, causing the cell temperature to rise,"*'" degrading
the cell components. The internal pressure of the cell in-
creases until the cell housing fails in a first venting event. If
no action is taken, then the cell temperature continues to
rise until the cell explodes. The explosion can spread to other
cells as thermal runaway propagation in an extremely
dangerous cascade. Aged cells'>'® and cells at higher states
of charge®'*'® are more vulnerable to thermal runaway
propagation.

The thermal runaway problem is particularly significant in the
automotive domain due to the growing demand for electric vehi-
cles. To ensure safety, regulatory frameworks are instigating
new mandates related to lithium-ion batteries to warn occupants
prior to thermal runaway propagation.’®'”

Existing battery health monitoring sensors are incapable of
providing sufficient prognostic capability to avert cell thermal
runaway. Specifically, voltage and current sensing are limited
where the cells are in parallel and series configurations. Temper-
ature sensors are only effective if each cell has a sensor, which is
an impractical implementation. Therefore, robust prognostics
are needed to detect when a single cell is in danger of entering
thermal runaway.

)

Gheck for
Updates

Gas sensors to detect the first venting event are gaining atten-
tion'®* because a first venting event is a nearly ubiquitous
feature of lithium-ion cells that will eventually enter thermal
runaway. This is especially beneficial in cases of latent failures
due to cell abuse over time, which is non-trivial to diagnose
with existing sensors. However, gas detection may not detect
every type of failure, especially in cases where there is minimal
time between a venting event and thermal runaway.

The first venting gases are primarily CO,, CO, C,H,, battery
electrolytes, and hydrogen.?*?” Hydrogen is an attractive target
for cell venting detection because (1) it is distinctive to cell vent-
ing, not existing in the atmosphere, so there are few false posi-
tives; (2) it is a fundamental gas generated by a wide variety of
battery chemistries; and (3) it has a high diffusion coefficient rela-
tive to other gases.

The main drawback of hydrogen is its lower relative concentra-
tion compared to other vented species. Commercially available
hydrogen sensors based on thermal conductivity typically have
detection limits of thousands of parts per million and could report
“no hydrogen” following a venting event. However, when more
sensitive tools are used, hydrogen is invariably detected.?”

Hydrogen can be generated in several ways. The simplest is
electrolysis of trace water or water generated from electrolyte
decomposition.?® A second is the reaction between lithium den-
drites and polyvinylidene fluoride.?*" A third is from solvent
decomposition.®?732-36

Xuegin and Lei®” used graphite-graphite symmetric cells to
show that hydrogen is generated irrespective of cathode
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Figure 1. Lithium ion cell journey to thermal runaway

Top: evolution of cell temperature and battery pack hydrogen concentration for lithium-ion cells under stress. (1) Chemical reactions in the cell increase its internal
pressure. (2) The cell vents. Various molecules are present in the plume. (3) If no action is taken, then the cell enters thermal runaway. (4) Hydrogen from the vented

gas can be used to initiate cell cooling, mitigating thermal runaway.

material, supporting the notion that electrolyte fragments are
generating hydrogen at the anode.®® There are mixed reports
on the effect of state of charge (SoC) on hydrogen content in
stressed cells; Geng et al.>® found that higher-SoC cells have
more vented hydrogen, while others found no dependence.®“°

Once hydrogen is vented, it must be detected. Several
studies show that a limit of detection of approximately 100
ppm would be adequate to detect hydrogen in the first venting
gas in a commercial stationary storage cabin.'®?"?? |n an
automotive battery pack, such a sensor would be integrated
with the battery management system to initiate a safety
routine.

A hydrogen sensor for detecting lithium-ion cell venting
should have the following characteristics: (1) a detection limit
lower than 100 ppm, as described above; (2) low operating po-
wer consumption to prevent parasitic drain on the primary bat-
tery during the key-off state; (3) virtually no false positives to
gases that may become present in an automotive atmosphere
(e.g., CO,, CO, and hydrocarbons); and (4) a sensor lifetime
greater than that of the battery pack for consumer
safety.4’10’23’25

In this study, a hydrogen chemically sensitive field-effect
transistor*’*? (H,-CSFET; Figure 2) selectively detects trace
hydrogen vented from automotive lithium-ion cells prior to
thermal runaway. We test the sensors in two thermal
runaway scenarios: overheating and overcharging at 1 C.
During these accelerated tests, hydrogen detection provides
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24 min and 3.6 min of early warning, respectively, before
thermal runaway. We then show that thermal runaway can
be prevented by intervening after hydrogen detection across
a variety of cell types and conditions: overheated cylindrical
nickel-cobalt-aluminum (NCA)-cathode cells at 10%-100%
state of charge, overheated pouch nickel-manganese-cobalt
(NMC) cathode cells at 10%-100% state of charge; an over-
heated prismatic lithium-iron-phosphate (LFP) cathode cell at
100% state of charge; and an overcharged NMC pouch cell.
Other sensing modalities monitor the cells, including voltage,
cell case temperature, and ambient pressure. Only hydrogen
detection reliably indicates cell venting. These results
demonstrate that hydrogen sensing enables early detection
and prevention of thermal runaway across lithium-ion cell
formats, chemistries, states of charge, and abuse condi-
tions. The reliable and broadly applicable hydrogen warning
signal suggests that this approach could significantly
enhance battery safety if integrated with battery manage-
ment systems.

RESULTS

Venting prior to thermal runaway

Figure 3 shows the hydrogen concentration, measured voltage,
and cell case temperature for two cases of thermal runaway:
overheating of a cylindrical cell and overcharging of a pouch
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Figure 2. Overview of the H,-CSFET sensor
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(A) Optical image of the sensor array. The inset shows the catalyst slab spanning the FET channel. Only one sensor from the array is used for a single mea-

surement. Scale bar: 100 pm.

(B) Optical image of a single sensor, showing the drain terminal, Pd thin film, and source terminal. Scale bar: 5 um.

(C) Cross-section of the dashed line in (B), showing the FET structure with a floating palladium thin-film sensing layer.

(D) TEM EDS cross-section of the dashed line in (B), showing the catalyst thin film. Scale bar: 10 nm.

(E) Normalized drain current during hydrogen exposure. The inset shows the drain current response to hydrogen. Limit of detection is <1 ppm.

cell. More detailed plots of each test are shown in Figures S7-
S10 and Videos S1 and S2.

Overheating cylindrical cell

The cell temperature increased at approximately 6°C/min during
heating. The cell vented when the case temperature reached
121°C. The measured voltage did not change at the venting
event, and the pressure sensor did not detect the venting
(<0.1 hPa).

After cell venting, the apparent heating efficiency decreased
as the cell shed heat through its evaporating electrolyte, as
seen in video frame 3 in Figure 3A. The hydrogen concentration
in the abuse chamber continued to increase following the venting
event. Approximately 30 min into the test, the internal cell reac-
tions became self-sustaining, causing the cell case tempera-
ture’s rate of rise to increase. The cell entered thermal runaway
23.9 min after the initial hydrogen signature was detected. The
cell in parallel with the heated cell did not enter thermal runaway.
Overcharging pouch cell
During 1 C overcharging from 100% SoC, the pouch cell’s case
temperature increased very slowly until the first venting
occurred. At venting, the cell case temperature was only 51°C,
much lower than in the overheating test. Following venting, the
temperature suddenly increased at a rate of approximately
13°C/min. The cell voltage dropped approximately 30 s after
venting, and the pressure sensor detected a 0.4 hPa spike.
The first venting coincided with the discontinuity in case temper-
ature measurement. Video footage shows an increasing amount
of smoke emanating from the cell after the first venting until ther-
mal runaway occurred 3.6 min later. On thermal runaway, the
resistance temperature detector (RTD) signal was lost.

In both cases, the vented hydrogen provided early warning
compared to other cell sensing modalities. The next set of exper-
iments will demonstrate that this information is actionable to miti-
gate thermal runaway.

Thermal runaway mitigation

The tests in this section show that hydrogen detection is an
actionable signal to prevent a stressed lithium-ion cell from
imminently entering thermal runaway by stopping the stressor.

NCA cathode cylindrical cells

Figure 4 shows the effect of overheating cylindrical cells with
10%, 50%, and 100% SoC. The measured voltage showed
no sign of first venting in any case due to the current interrupt
device (CID). The pressure sensor readings spiked by 8.5, 23,
and <0.1 hPa for the 10%, 50%, and 100% SoC cells, respec-
tively. More complete environmental data are available in
Figures S11-5S16, and videos are available in Videos S3, S4,
and S5.

The cell case temperature at first venting was between 111°C
and 125°C and was not correlated with SoC. After stopping the
heat source, the cell case temperature decreased for the 10%
and 50% SoC cells but not for the 100% SoC cell. Earlier work
has shown that higher-SoC cells have greater reactivity with
electrolyte materials'® and that higher-SoC cells have more
explosive failure events due to the reactivity of lithiated graphite
with electrolytes,* and this trend is also manifest at the lower-
temperature phenomenon of cell venting.

The measured hydrogen concentration at venting was be-
tween 100 and 400 ppm and was not correlated with SoC.
Hydrogen concentrations continued to increase slightly after
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Figure 3. Hydrogen gas measurement from lithium-ion cells prior to thermal runaway
Lithium-ion cells emit hydrogen prior to thermal runaway. Video stills of each test are provided (1) at the start, (2) at first venting, (3) after first venting, and (4) at

thermal runaway.

(A) Overheating a cylindrical 2170 cell. Voltage is measured across two cells in parallel.
(B) Overcharging a pouch cell at 1 C. x, RTD temperature measurement was lost at thermal runaway.

stopping the heat source, similar to the behavior of the cell where
the stressor was not removed, but at a much slower rate. The
video of the cells did not show continued evolution of smoke af-
ter the heat was removed.

At all SoCs tested, hydrogen was detected in the vent gas,
confirming its reliability as an early warning signal regardless of
these cells’ SoC.

NMC cathode pouch cells

Figure 5 shows thermal runaway mitigation using a hydrogen
signal from NMC cathode pouch cells overheated at various
states of charge and overcharged. A separate test at 100%
SoC and higher heating rate of 220 W showed similar information
as in Figure 5C (Figures S23 and S24). In all tests, the voltage
measurements did not indicate venting, and the pressure sensor

4 Cell Reports Physical Science 6, 102859, October 15, 2025

did not detect any significant pressure changes (<0.1
hPa). More complete environmental data are available in
Figures S17-S26. Videos for some tests are available as
Videos S6, S7, and S8.

In overheating tests, the cell case temperature at first venting
decreased with increasing SoC, suggesting that higher states of
charge allow cells to build up a critical amount of gas earlier. Af-
ter removing the heat source, the cell temperature continued to
rise to varying degrees: less than 1°C in the 10% SoC cell, 3°C in
the 50% SoC cell, 9°C in the 100% SoC cell at 110 W, and 19°C
in the 100% SoC cell at 220 W.

This pattern of larger temperature increases following at higher
SoC is consistent with the findings for the NCA cathode cylindri-
cal cells, though the NMC cathode pouch cells demonstrated
higher temperature increases across all SoC levels. The greater
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Figure 4. Thermal runaway mitigation with trace hydrogen detection in NCA cathode cells
Shown is the thermal runaway mitigation test for thermally stressed NCA cathode cylindrical lithium-ion cells at SoC of (A) 10%, (B) 50%, and (C) 100%. Red

dashed lines indicate the time of the first H, signal.

reactivity of higher-SoC NMC cells aligns well with Rowden and
Garcia-Araez,?” who reported that delithiated NMC cathodes are
more reactive with the electrolyte, especially above 80% SoC.
Higher-SoC cells would require more cooling than lower-SoC
cells to cool to a safe temperature.

The amount of hydrogen vented showed a slight correlation
with SoC. The hydrogen profile in these tests is different from
that in Figure 4 due to the different abuse chamber; here, the
abuse chamber is much larger, so the initial plume diffuses
throughout the chamber toward a uniform value. Importantly,
hydrogen was detected in each test regardless of cell SoC
or heating rate, further confirming its reliability as an early
warning indicator.

Figure 5D shows a pouch cell overcharged at 0.25 C until vent-
ing. The cell case temperature increased very slowly at <0.1°C/
min until the cell voltage leveled off at 5.26 V, at which point
the temperature began increasing more rapidly at approximately
1.1°C/min. In Jiang et al., this voltage plateau is found to indicate
lithium dendrite formation.“® The cell vented when the case tem-
perature reached 71°C, simultaneous with hydrogen detection.
The cell voltage dropped approximately 30 s after venting,
similar to the timing observed when a similar cell entered thermal

runaway (Figure 3B). The pressure sensor detected a modest
spike of 0.3 hPa.

After ceasing overcharging, the cell case temperature
continued to rise to 94°C. This was the largest temperature in-
crease observed in any thermal runaway mitigation experiment.
The temperature rose rapidly with an abrupt cell voltage drop in
both Figures 5D and 3B, most likely due to accumulated lithium
dendrites forming internal shorts.****

Overheating LFP prismatic cell

Figure 6 shows the overheating of a prismatic cell. More com-
plete environmental data are available at Figures S27 and S28,
and a video of the test is Video S9. The cell temperature
increased at approximately 2°C/min until around 55 min,
when additional power was delivered to the cell to continue
increasing the temperature. This cell’s case temperature
at venting was higher than that in any other cell tested, 142°C.
The measured voltage dropped simultaneous with the venting
event. The pressure sensor detected a spike of approximately
60 hPa, the largest pressure increase observed in any test.

After the venting event, the cell case temperature dropped
suddenly, simultaneous with the venting rather than with cutting
off power to the heater. After the initial temperature drop, the cell
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Figure 5. Thermal runaway mitigation with trace hydrogen detection in NMC cathode cells
Shown is the thermal runaway mitigation test for NMC cathode pouch lithium-ion cells thermally stressed at SoC of (A) 10%, (B) 50%, and (C) 100% and

(D) overcharged. Red dashed lines indicate venting.

case temperature increased by approximately 5°C for 30 s
before decreasing again. Hydrogen was detected simulta-
neously with the venting event. The drop in measured hydrogen
concentration is attributable to the plume diffusing throughout
the abuse chamber. More testing is necessary to determine
how typical this behavior is of prismatic cells in general.

DISCUSSION

Thermal runaway in lithium-ion cells was mitigated by hydrogen
detection using an H,-CSFET across a variety of formats, chemis-
tries, states of charge, and stressors. Mitigation tests included
overheating of cylindrical NCA cathode cells, pouch NMC cathode
cells, and prismatic LFP cathode cells as well as overcharging of a
pouch NMC cathode cell. In experiments where the cell was
pushed to thermal runaway, venting provided 23.9 min early warn-
ing from a 6°C/min overheating and 3.6 min from 1 C overcharging.
Major findings from mitigation tests included the following.

(1) Hydrogen gas detection was a more reliable indicator of
imminent thermal runaway than sensors for pressure,
voltage, and cell case temperature.

6 Cell Reports Physical Science 6, 102859, October 15, 2025

(2) Once a heating stressor was removed, temperatures in
higher-SoC cells took longer to fall than in lower-SoC
cells, especially in NMC cathode pouch cells.

(3) In the overcharge test, cell temperature remained
elevated for longer than in overheating tests.

(4) SoC of overheated cylindrical NCA cathode cells did not
affect the first venting temperature. SoC in overheated
pouch NMC cathode cells was inversely correlated with
cell venting temperature.

Within the context/application of preventing thermal
runaway in lithium-ion battery packs, the underlying CSFET
sensor platform can be adapted to detect other relevant bat-
tery off-gases, such as battery electrolytes and other volatile
organic compounds, which could provide an additional layer
of information in conjunction with trace hydrogen to identify
lithium-ion cell leakage. Specifically, unique sensing layers
and operating temperatures can enable selectivity for the rele-
vant gases. Furthermore, the CSFET platform can be adapted
to also detect off-gases related to newer/emerging battery
chemistries, such as lithium-sulfur, where hydrogen sulfide
may be released.
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Figure 6. Thermal runaway mitigation with trace hydrogen detection
in LFP cathode cells

Shown is the thermal runaway mitigation test for LFP cathode pouch lithium-
ion cell thermally stressed at 100% SoC.

More work is needed to understand how these results
compare to cells in fully assembled commercial battery packs.
The types of defects in those packs may lead to different cell
temperature evolution profiles. Hydrogen gas detection provides
a valuable method for detecting lithium-ion cells that may enter
thermal runaway.

METHODS

Multiplexed sensor evaluation board

A custom evaluation board was used to interact with the Hy-
CSFETs electronically (Figure S1). The evaluation board syn-
chronously measures the following: Ho-CSFET sensors; ambient
temperature and humidity with the Sensirion SHT-35; pressure
with the ST Micro LPS22HB; cell case temperature with an
RTD temperature sensor wound around the case for cylindrical
cells and attached directly to the center of the case for pouch
cells with the El Sensor Technologies ERTD2A102C; and cell
voltage. During battery abuse tests, the evaluation board was
covered and fitted with a mesh to protect board components.
In larger-Ah-capacity pouch and prismatic cells, the board was
also inserted into a permeable high-temperature carbon fiber
sleeve (Figure S6). Diagnostic tests of the evaluation boards
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following thermal runaway experiments showed that the board’s
components continue to perform following a thermal runaway
test, though H,-CSFETs were discarded following thermal
runaway experiments.

Additional gas sensors

A separate gas sensor, Amphenol SGX-BLD2, based on a metal
oxide sensor for flammable gases, was used to corroborate
venting events as well as a thermal conductivity (TC) hydrogen
sensor’® as an additional hydrogen sensor, where the TC sen-
sor’s limit of detection is roughly thousands of parts per million
hydrogen. The flammable gas sensor was verified to detect a va-
riety of battery vent gases (Figure S2). Measurements were ac-
quired once per second.

H>-CSFET

Hydrogen was sensed by the H,-CSFET, whose preparation us-
ing conventional silicon integrated circuit processing techniques
is described elsewhere.”'***> The sensors rely on palladium’s
highly selective work function shift in the presence of hydrogen,
which modulates the transistor’s threshold voltage and, there-
fore, the transistor channel current. The interaction is highly spe-
cific to the molecular hydrogen H-H bond and H diffusion within
Pd. Similar bonds containing hydrogen (e.g., C-H in methane or
battery solvents) are not cleavable at the temperature at which
we operate our sensor and are therefore not detected. The H,-
CSFET hydrogen sensor is selective for all gases tested.

No other components (e.g., contacts, dielectric) are sensitive
to hydrogen; when Pd is not deposited, the sensor does not
respond.”’ A notable difference in this work is the use of a
10 nm palladium-sensing layer that is electrically floating rather
than the ~1 nm palladium-sensing layer used previously. The
greater thickness is preferable from a consistency and manufac-
turability perspective. A microheater that surrounds the tran-
sistor and operates at 60°C prevents humidity and other volatiles
from adsorbing to the surface while keeping the sensor response
to hydrogen constant across a wide humidity range.*” The
sensor described here should be made more power efficient to
prevent draining auxiliary batteries through improvements in
thermal isolation to be a relevant consumer safety feature.

H»>-CSFET imaging

Cross-sectional transmission electron microscopy (TEM) shows
a uniform 10 nm Pd layer (Figure S3) with no contaminants.
Cross-sectional TEM analysis was performed by Covalent
Metrology. Samples were coated with protective carbon. TEM
lamellae were prepared by lift-out preparation technique using
a Thermo Fisher Scientific (FEI) Helios UC focused ion beam-
scanning electron microscope system. TEM images were ac-
quired using a Thermo Fisher Scientific (FEI) Talos F200X G2
with a bright extreme field-emission gun source operated at
200 kV accelerating voltage and using a Gatan OneView acqui-
sition unit. Energy dispersive spectroscopy (EDS) spectra were
collected on a Thermo Fisher Scientific Super X EDS detector.

H>-CSFET calibration and interference testing

The Hy-CSFET sensor responses were calibrated prior to battery
abuse tests by placing the evaluation board inside a custom

Cell Reports Physical Science 6, 102859, October 15, 2025 7
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Table 1. Lithium-ion cells tested

Capacity Test
Cell (Ah) Voltage Cathode Cell size volume (L)
Cylindrical 5 4.2 NCA 21 x 70 mm 3.6
Pouch 72 4.2 NMC 23 x4 x04in 94
Prismatic 120 3.8 LFP 174 x 48 x 94

171 mm

3D-printed enclosure connected to a gas stream by a barbed
fitting. A representative plot showing the raw drain current of
eight CSFETSs at calibration is shown in Figure S1B. Typical po-
wer consumption of the FET is ~1 pW. The bulk silicon micro-
heater has a power consumption of ~50 mW, though proper
isolation and duty cycling of the heated elements can signifi-
cantly decrease the power consumption.*® The logarithm of
the sensor’s current has a roughly linear relationship with the log-
arithm of the hydrogen concentration between 1 and 1,000 ppm,
with experimental®’ and theoretical results showing a leveling off
of the response above ~5,000 ppm (at the current sensor tem-
perature).47 The relationship between sensor current and ppm
reading is given by the following equation:

Log(ppm) = Log,(2(A * (1 + B) — 2(A + B)),
(Equation 1)

where Log,(ppm) is the log base 2 of the hydrogen concentration
in parts per million, A and B are fit parameters for the above
equation, and | is the sensor current divided by a baseline value
taken shortly after startup. Calculated sensor readings from an
array of 4-8 H,-CSFETs are combined to take the median
reading, given than these are not production devices, and there
is some variability.

The reading from the sensor array is then filtered to guard
against false positives. Readings less than 10 ppm are set to
0 ppm to avoid false positives. Readings above 25 ppm are un-
changed. Readings in between are scaled as in Equation 2:

If 10 < ppm < 25 : Reading = pPPMmedian

2
% (Equation 2)

The above filter is used in all plots shown here except when
noted otherwise in the supplemental information.

The H>-CSFET response is temperature compensated with a
temperature sensor on the evaluation board (Figure S4) by con-
trolling the microheaters’ power in relation to the onboard tem-
perature sensor, which enables the sensor to compensate tem-
perature increases up to 70°C. The accuracy of the
measurement between 30 and 1,000 ppm is approximately
10%. The sensor is selective to hydrogen over cell vent gases,
including C,H4, CO,, common lithium-ion cell electrolytes, and
humidity (Figure S5).

Gas delivery tests for calibration, challenge, and selectivity
tests were performed with pure dry air as diluent (Praxair Tech-
nology). Hydrogen gas was delivered from a 1,000 ppm tank in
pure dry air. CO,, CO, CzHg, and CH, gases were delivered
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from calibration cylinders with balance of dry air. Battery sol-
vents (dimethyl carbonate and ethyl methyl carbonate) were
delivered by flowing a dry diluent stream that passed through
the battery solvent liquid. Co-feeding experiments (as in
Figure S5) were conducted by mixing a hydrogen gas stream
with a stream of the interferant or with a stream from a bubbled
solvent. Typical gas flow rates were approximately 1,000 stan-
dard cubic centimeters per minute. Gas delivery was controlled
by mass flow controllers (Alicat Scientific). The H,-CSFET sensor
responses were calibrated prior to battery abuse tests by placing
the evaluation board inside a custom 3D-printed enclosure con-
nected to a gas stream by a barbed fitting.

Stressing Li-ion cells

A battery abuse chamber was constructed to house the cells,
evaluation board, and corroborating sensors (Figure S6). The
chamber walls are made with an exoskeleton of reinforced
aluminum and include polycarbonate windows for lighting and
video capture. The free chamber internal volume is 3.6 L in the
cylindrical cell tests and 94 L in the pouch and prismatic cell
tests. A smaller chamber was used for the cylindrical cells to
achieve a more uniform ratio of battery size to chamber volume.
The sensors are 85 mm from the nearest cell when testing cylin-
drical cells and 75 mm from the cell when testing pouch and pris-
matic cells. Ambient temperature was ~25°C and increased
<10°C prior to all first venting events. The tests were performed
in atmospheric air. The chamber was sealed with a monostable
venting port during battery abuse tests. Baseline measurements
were recorded for at least 1 h prior to applying a stressor. The
chamber was opened, and reaction products were vented
following abuse tests. Between battery abuse tests, the chamber
was cleaned to remove any vent products.

Three different cells of three different chemistries, sizes, and
formats were tested in this study and are summarized in
Table 1. Fresh (non-aged) cells were used in all tests. Cells
were stored at 25°C between arrival at the test facility and
testing. Cells were charged to full capacity and then load tested
to a lower voltage to determine the capacity of each cell. Cells
were then recharged and subsequently discharged to a 10%,
50%, or 100% SoC as defined by the measured capacity. In
each test with cylindrical cells, two cells were placed in parallel
to simulate the voltage signal that would be read by a voltage
sensor for a pack of cells.

Overheating tests

In overheating tests of cylindrical cells, two cells were placed in
parallel. Nichrome wire was wrapped around one of the cells as a
heat source at 12.5 W for an initial heating rate of ~6°C/min. Cy-
lindrical cells contain a safety device known as a CID, which pre-
vents overcharging. When a single cell is stressed, pressure in-
side the cell increases until the CID activates, and the voltage
across the stressed cell’s electrodes drops. In practice, cylindri-
cal cells are massively in parallel, which prevents a measured
voltage from identifying a problem with the cell.

In overheating tests of pouch cells, a 3D-printed heating pad
was used as heat source, with a welding blanket for insulation.
Power supply was set to 110 or 220 W for initial heating rates
of ~4°C and 8°C/min, respectively. In overheating tests of the
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prismatic cell, heating was done with two 120 x 120 mm silicone
heater pads, one on each side of the cell, connected in series.
Power supply was set to 115 W and then 230 W for heating rates
of 2.1°C-2.6°C/min.

In mitigation tests, external heating was stopped as soon as
hydrogen was detected by the Ho-CSFET sensor to simulate a
corrective action being taken in response to gas detection.

Overcharging tests

In the overcharging test that ended in thermal runaway, the po-
wer source was a Sorensen XG 1700. The supply was limited
t0 9.0 V and 73.5 A with a 1 C charging rate starting at ~4.2 V,
as seen by the cell. In the overcharge test where thermal
runaway was mitigated, the power source was a Riden
RD6018 (maximum outputs: 18.1 A, 48 V). The supply was
limited to 7.2 V and 18.0 A, resulting in a 0.25 C charging rate
starting at ~4.2 V as seen by the cell. The second power supply
was used because it could be controlled to automatically turn off
when hydrogen was detected.

A summary of all tests is provided in Table S1.
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