Rationally Designed, Three-Dimensional Carbon Nanotube Back-Contacts for Efficient Solar Devices

Cary L. Pint, Kuniharu Takei, Rehan Kapadia, Maxwell Zheng, Alexandra C. Ford, Junjun Zhang, Arash Jamshidi, Rizia Bardhan, Jeffrey J. Urban, Ming Wu, Joel W. Ager, Michael M. Oye, and Ali Javey*

Devices designed to convert sunlight into usable sources of energy have become the focus of increased attention in the past decade due to the diminishing nature of fossil fuel resources.[1] As a result, recent research efforts have focused on improving solar device performance and cost using novel processes, materials and device technologies.[2,3] One example includes the use of three-dimensional (3-D) architectures to enhance the carrier collection efficiency and photon management of the devices.[4-6]

In such a device concept, the efficiency of thin film solar devices can be enhanced by orthogonalizing the light absorption and carrier collection processes, especially for the material systems that exhibit low minority carrier lifetimes.[7] In addition, surface reflectance is reduced and the absorption is enhanced, thus improving the overall conversion efficiency. One route for fabricating 3-D solar devices involves the use of textured substrates and/or back-contacts followed by the conformal deposition of thin films of the absorber material.[8] In this regard, exploring scalable and tunable nanotexturing processes with high-aspect ratio features is required.

Here, we demonstrate the fabrication of textured carbon nanofiber (CNF) arrays for the back-contact of solar devices with improved photon capture properties. Using a scalable, solution-phase condensation process,[9-11] conductive and chemically robust CNF scaffolds with tunable pitch and feature shape/size are obtained. To explore the utility of the proposed approach, the nanotextured CNF electrodes are coated with conformal thin films of TiO₂ absorber layer for water oxidation.[12-17] Unlike the use of other reported TiO₂/CNF architectures, or nanotubes and nanowires made of TiO₂,[18-23] this morphology allows us to design antireflective absorbing layers to decouple and optimize absorption and carrier collection. Based upon this, we demonstrate an enhancement of up to 3 times in the short circuit current density (J_{SC}) for the 3-D CNF/TiO₂ photoelectrochemical (PEC) device as compared to its planar counterpart. Antireflection is particularly important as it is not feasible to use conventional antireflective coatings in PEC cells since the effective junction is formed at the semiconductor-liquid interface.[24] Such a coating would inhibit the injection of photo-generated minority carriers into the solution.

Figure 1 demonstrates the general fabrication approach for textured CNF back-contacts. First, vertically aligned CNF arrays (Figure 1a,c) are grown in a plasma-enhanced chemical vapor deposition system on Si/SiO₂ substrates using Ni catalyst thin films (thickness, 30 nm), supported on conductive Cu/Ti bilayers (thickness, 200/30 nm).[25] The fabricated CNF array is electrically addressable by the substrate and exhibits an average vertical height of ~10 μm and CNF diameters between 10-120 nm, as measured by SEM. Following the growth process, the vertically aligned CNF arrays are textured using a scalable solution-phase condensation process (Figure 1b,d).[9-11] Here, CNFs are exposed to a 20 μL drop of acetone (~0.6 × 0.6 cm² sample size) which is then dried under ambient conditions. Upon drying, capillary forces cause reorganization of the vertically aligned carbon nanofiber morphology, which is inherently dependent on the surface tension of the liquid.[26] Solvents with different surface tensions were found to yield variable structures upon drying, with acetone yielding the highest density of compact pillar structures with a base diameter of 4–5 μm (Figure 1d) that resulted in the most optimal device performance. The use of other solvents and drying conditions resulted in either larger pillars with smaller out-of-plane angles or else ridge-like pillars that formed cellular, interconnected structures. Therefore, acetone condensation was utilized throughout experiments described here.

Atomic layer deposition (ALD) at 250 °C was utilized to coat TiO₂ thin films with varied thicknesses (T_{TiO2} = 80–400 nm) on the surface of the texturized CNF templates as the light-absorbing material. As demonstrated in SEM images shown in
Beyond generated by the TiO$_2$ absorber. As expected, the overall measurement of planar and 3-D textured samples can be directly assessed. Shown in Figure 3a is the percent reflectivity, R, as measured for the planar TiO$_2$/graphite substrate, and the coated texturized CNF templates. For both samples, $T_{	ext{TiO}_2} \sim 60$–80 nm. The reflectivity of the CNF templates is $R_{\text{planar}} = 0.3$–0.7% in the ultraviolet and visible regimes, whereas the reflectivity of the planar graphite is $R_{\text{planar}} = 14$–22%. Here, the effect of diffused light is ignored which can affect the absolute reflectance measured, but will not change the observed trend. The drastic low surface reflectance observed for 3D TiO$_2$ structures arises from the subwavelength tip-diameter, minimizing the interaction of light with the surface. An enhancement factor, γ, can be defined as $\gamma = (100-R_{\text{3D}})/(100-R_{\text{planar}})$, which yields a suggested 1.2–1.3 times increase in device performance for the 3-D architecture based on minimized reflections. Given that conventional anti-reflective coating cannot be utilized in PEC devices, the use of a structural anti-reflective approach explored here is particularly important. Yet, reflectance alone does not explain the 2–3x enhancement in J_{SC} that is experimentally observed.

Next, we examine the effect of increased optical path length under AM 1.5 G (1 sun) solar radiation using a three-electrode setup equipped with a Pt counter electrode and an Ag/AgCl reference electrode. AM 1.5 G illumination was utilized as a standard to compare the effect of electrode structure on the photocurrent J_{SC} for the three-electrode measurement is defined at the thermodynamic threshold voltage where the three-electrode cell has a net gain of free energy under illumination (0.216 V) based on the Nernst equation. The planar devices were made by the ALD of TiO$_2$ on a pressed graphite surface polished with 900 grit sandpaper and cleaned prior to coating. Shown in Figure 3c are the J_{SC} values for both the planar graphite and CNF templates as a function of $T_{	ext{TiO}_2}$.

The 3-D TiO$_2$/CNF architecture consistently exhibits 2-3x enhancement in J_{SC} as compared to the planar devices with the same TiO$_2$ physical thickness.

We now consider factors that could contribute to the observed enhancement. These include (i) reduced surface reflectance, (ii) enhanced optical path length for the same TiO$_2$ physical thickness, and (iii) improved carrier collection efficiency. The reflectance of planar and 3-D textured samples can be directly assessed. Shown in Figure 4a is the percent reflectivity, R, as measured for the planar TiO$_2$/graphite substrate, and the coated texturized CNF templates. For both samples, $T_{	ext{TiO}_2} \sim 60$–80 nm. The reflectivity of the CNF templates is $R_{\text{planar}} = 0.3$–0.7% in the ultraviolet and visible regimes, whereas the reflectivity of the planar graphite is $R_{\text{planar}} = 14$–22%. Here, the effect of diffused light is ignored which can affect the absolute reflectance measured, but will not change the observed trend. The drastic low surface reflectance observed for 3D TiO$_2$ structures arises from the subwavelength tip-diameter, minimizing the interaction of light with the surface. An enhancement factor, γ, can be defined as $\gamma = (100-R_{\text{3D}})/(100-R_{\text{planar}})$, which yields a suggested 1.2–1.3 times increase in device performance for the 3-D architecture based on minimized reflections. Given that conventional anti-reflective coating cannot be utilized in PEC devices, the use of a structural anti-reflective approach explored here is particularly important. Yet, reflectance alone does not explain the 2–3x enhancement in J_{SC} that is experimentally observed.

Next, we examine the effect of increased optical path length under AM 1.5 G (1 sun) solar radiation using a three-electrode setup equipped with a Pt counter electrode and an Ag/AgCl reference electrode. AM 1.5 G illumination was utilized as a standard to compare the effect of electrode structure on the photocurrent J_{SC} for the three-electrode measurement is defined at the thermodynamic threshold voltage where the three-electrode cell has a net gain of free energy under illumination (0.216 V) based on the Nernst equation. The planar devices were made by the ALD of TiO$_2$ on a pressed graphite surface polished with 900 grit sandpaper and cleaned prior to coating. Shown in Figure 3c are the J_{SC} values for both the planar graphite and CNF templates as a function of $T_{	ext{TiO}_2}$.

The 3-D TiO$_2$/CNF architecture consistently exhibits 2-3x enhancement in J_{SC} as compared to the planar devices with the same TiO$_2$ physical thickness.

We now consider factors that could contribute to the observed enhancement. These include (i) reduced surface reflectance, (ii) enhanced optical path length for the same TiO$_2$ physical thickness, and (iii) improved carrier collection efficiency. The reflectance of planar and 3-D textured samples can be directly assessed. Shown in Figure 3c are the J_{SC} values for both the planar graphite and CNF templates as a function of $T_{	ext{TiO}_2}$.

The 3-D TiO$_2$/CNF architecture consistently exhibits 2-3x enhancement in J_{SC} as compared to the planar devices with the same TiO$_2$ physical thickness.

We now consider factors that could contribute to the observed enhancement. These include (i) reduced surface reflectance, (ii) enhanced optical path length for the same TiO$_2$ physical thickness, and (iii) improved carrier collection efficiency. The reflectance of planar and 3-D textured samples can be directly assessed. Shown in Figure 3c are the J_{SC} values for both the planar graphite and CNF templates as a function of $T_{	ext{TiO}_2}$.

The 3-D TiO$_2$/CNF architecture consistently exhibits 2-3x enhancement in J_{SC} as compared to the planar devices with the same TiO$_2$ physical thickness.
architecture explored here presents an advantage. A scheme depicting this mechanism is shown in Figure 4b. In this case, the high aspect-ratio structure inherent in the textured CNF electrodes results in the formation of a semiconductor absorber with a normal vector (along the direction of the thickness) oriented with some angle $>$60° relative to the average angle of incident radiation. This means that the effective thickness of the semiconductor is significantly greater than the actual physical thickness meaning that many more photons will be absorbed closer to a point where they can be collected.

The average out-of-plane angle of the textured CNFs (1–2 μm structure base radius, 10 μm height) explored here is $\theta = 75°–85°$ on average based on SEM characterization (Figure S1). For ideal normal incident radiation, geometrical considerations suggest a structure with $\theta \approx 80°$ to yield $\sim 6x$ enhancement in the optical path length as compared to the physical material thickness. This means for $T_{TiO_2} = 300 \text{ nm} = 3L_D$, an optical path length of \sim1.8 μm can be achieved for the normal incident light. In actuality, this simple geometric consideration considerably overestimates the enhancement factor since it assumes only an

Figure 2. (a,b) SEM images of texturized carbon nanofiber arrays coated with (a) 80 nm TiO$_2$, and (b) 400 nm TiO$_2$. Inset in both images are higher magnification views. (c,d) Top-view SEM image of a broken TiO$_2$/CNF pillar with (c) 80 nm and (d) 400 nm TiO$_2$ coating. Characterization of TiO$_2$/CNF architectures using (e) XRD and (f) Raman spectroscopy to confirm the presence of anatase TiO$_2$ and the wall quality of the CNFs, respectively.
ideal normal irradiation. Therefore, it should be used simply as a guideline rather than a strict calculation.

Experimental results in support of this geometric analysis are discussed in the supporting information (Figure S3), where similarly antireflective TiO$_2$/CNFs with a significantly lower pillar density (and lower out-of-plane angle) yield only a 2x enhancement to device performance in comparison to flat TiO$_2$/graphite. Although this does not decouple the physics of the absorption and collection processes that lead to these enhancements, it does demonstrate that electrode structure is a principle component of enhanced device performance from 3-D semiconductor scaffolds. Therefore, this suggests that the textured CNF electrodes as a back-contact for a thin semiconducting absorbing layer offers a rational approach for obtaining devices with a balance between the effective thickness for maximized absorption, and the actual thickness, which could ideally be tuned to L_D. In this particular case of TiO$_2$, this yields high efficiency since most absorbed photons have energies near the semiconductor band-gap energy. We further conclude that rational design of semiconductor architecture, in addition to chemical features of the semiconductor material (i.e. band

Figure 3. (a) Scheme depicting the three-electrode setup utilizing TiO$_2$ deposited on conductive CNF back contacts as the absorber of AM 1.5 G solar irradiation, and the reference (AgCl/Ag) and counterelectrode (Pt) configuration. (b) Current-potential curves of TiO$_2$ coated carbon nanofiber arrays with different TiO$_2$ thicknesses using a simulated AM 1.5 G solar spectrum in 1 M NaOH (dark current: 150 nm TiO$_2$/CNF) and (c) Short circuit current density (J_{SC}), defined at $E = 0.216$ V based on the three-electrode configuration, as a function of TiO$_2$ thickness for both TiO$_2$ coated, texturized CNFs and TiO$_2$ coated planar graphite.

Figure 4. (a) Percent reflectance as a function of wavelength for both planar graphite and coated, texturized CNF arrays demonstrating the anti-reflective nature of the CNF arrays (60 and 80 nm TiO$_2$ coating, respectively). (b) Scheme depicting antireflective nature of highly 3-D structure, and visually demonstrating other possible means by which a 3-D structure can enhance behavior of a solar device.

ideal normal irradiation. Therefore, it should be used simply as a guideline rather than a strict calculation.

Experimental results in support of this geometric analysis are discussed in the supporting information (Figure S3), where similarly antireflective TiO$_2$/CNFs with a significantly lower pillar density (and lower out-of-plane angle) yield only a 2x enhancement to device performance in comparison to flat TiO$_2$/graphite. Although this does not decouple the physics of the absorption and collection processes that lead to these enhancements, it does demonstrate that electrode structure is a principle component of enhanced device performance from 3-D semiconductor scaffolds. Therefore, this suggests that the textured CNF electrodes as a back-contact for a thin semiconductor absorbing layer offers a rational approach for obtaining devices with a balance between the effective thickness for maximized absorption, and the actual thickness, which could ideally be tuned to L_D. In this particular case of TiO$_2$, this yields high efficiency since most absorbed photons have energies near the semiconductor band-gap energy. We further conclude that rational design of semiconductor architecture, in addition to chemical features of the semiconductor material (i.e. band

Figure 3. (a) Scheme depicting the three-electrode setup utilizing TiO$_2$ deposited on conductive CNF back contacts as the absorber of AM 1.5 G solar irradiation, and the reference (AgCl/Ag) and counterelectrode (Pt) configuration. (b) Current-potential curves of TiO$_2$ coated carbon nanofiber arrays with different TiO$_2$ thicknesses using a simulated AM 1.5 G solar spectrum in 1 M NaOH (dark current: 150 nm TiO$_2$/CNF) and (c) Short circuit current density (J_{SC}), defined at $E = 0.216$ V based on the three-electrode configuration, as a function of TiO$_2$ thickness for both TiO$_2$ coated, texturized CNFs and TiO$_2$ coated planar graphite.

Figure 4. (a) Percent reflectance as a function of wavelength for both planar graphite and coated, texturized CNF arrays demonstrating the anti-reflective nature of the CNF arrays (60 and 80 nm TiO$_2$ coating, respectively). (b) Scheme depicting antireflective nature of highly 3-D structure, and visually demonstrating other possible means by which a 3-D structure can enhance behavior of a solar device.
gap) are important in designing efficient solar devices. This is particularly true for metal-oxides, where poor minority carrier lifetimes can be compensated by tuning the structure of the electrode—perhaps yielding a route toward high efficiency devices from cheap and readily available materials.

In summary, we develop here a technique to fabricate scalable, 3D back-contact architectures for solar devices utilizing a solution-textured CNF array template. Utilizing TiO$_2$ as an example absorber layer for PEC, a $-3x$ enhancement of measured JSC was observed compared to planar substrates. We explain the enhancement as being due to a combination of reduced reflectance, enhanced absorption due to increased effective optical path length, and enhanced carrier collection efficiency. The CNF back-contacts reported here present a generic route for enhancing the performance of conventional thin-film solar devices, including PVs, especially for materials with small J_0, less than the characteristic absorption length. Graphitic CNFs are particularly attractive for such back-contact applications due to their high conductance, lack of surface native oxide layers, and high chemical robustness.

Experimental Section

Aligned Carbon Nanofiber Growth: Vertically aligned carbon nanofiber (CNF) arrays were grown in a plasma-enhanced chemical vapor deposition system utilizing C,H$_2$, H$_2$, and NH$_3$ precursors using a general approach described in more detail elsewhere. The as-grown samples had CNF vertical heights of $\sim 10 \mu m$ based on SEM imaging. Catalyst growth substrates were deposited utilizing electron-beam evaporation using a 200 nm thick Cu layer, a 30 mm thick Ti layer, and a 30 nm thick Ni layer on a p-Si substrate with 50 nm SiO$_2$. The Ti layer acts as an interdiffusion barrier for the Ni catalyst while still allowing the substrate to remain conductive following growth. Following growth, the CNFs were exposed to liquid treatment using a drop of solvent, dried, and then coated using ALD.

Atomic Layer Deposition: ALD coating was performed using a Picoum Sunale system with intermittent 0.1 sec pulses of titanium tetrakis isopropoxide and water vapor between 5 second N$_2$ purges. The deposition temperature was 250 °C. This condition results in a deposition rate of $\sim 0.2-0.3 \ A/\text{cycle}$.

AM 1.5 G Photocurrent Measurements: Photocurrent measurements were performed utilizing a Newport solar simulator (50-500 W, model 67005), which was tuned to 100 mW/cm2 using a broadband power source. Reflectance measurements were performed utilizing facilities in the Electronic Materials Program, LBNL, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges a Sloan Fellowship and support from the World Class University program at Sunchon National University.

Acknowledgements

This work was partially funded by Berkeley Sensor and Actuator Center, and Mohr Davidow Ventures. The synthesis part of this work was supported by a LDRD from Lawrence Berkeley National Laboratory (LBNL). Reflectance measurements were performed using facilities in the Electronic Materials Program, LBNL, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges a Sloan Fellowship and support from the World Class University program at Sunchon National University.

Received: July 31, 2011
Revised: September 28, 2011
Published online: October 26, 2011

Supporting Information

Rationally Designed, Three-Dimensional Carbon Nanotube Back-Contacts for Efficient Solar Devices

Cary L. Pint, Kuniharu Takei, Rehan Kapadia, Maxwell Zheng, Alexandra C. Ford, Junjun Zhang, Arash Jamshidi, Rizia Bardhan, Jeffrey J. Urban, Ming Wu, Joel W. Ager, Michael M. Oye, and Ali Javey*
Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.(please add manuscript number))

Rationally designed three-dimensional carbon nanotube back contacts for efficient solar devices

Cary L. Pint, Kuniharu Takei, Rehan Kapadia, Maxwell Zheng, Alexandra C. Ford, Junjun Zhang, Arash Jamshidi, Rizia Bardhan, Jeffrey J. Urban, Ming Wu, Michael M. Oye, and Ali Javey*

Figure S1. Zoomed-in SEM image showing textured CNF pillars following acetone condensation. In this case, the base of the pillar has a radius of ~ 1.4 μm with Θ ~ 81°. It should be noted that this undershoots the pillar height due to out-of-plane parallax during imaging. On average, most pillars are found to have widths at the base of structure near or below 2 μm, which validates the estimation of 75° < Θ < 85° in the main text.
Figure S2. Simple geometrical argument relating the effective thickness of a semiconductor coated on a three-dimensional nanostructure (t_{eff}) to the actual coated thickness (t) as a function of the tilt angle of the nanostructure. In correspondence with Figure 4, the effect of a three-dimensional structure can be envisioned to be most apparent when the tilt angle is between 60°-85°, yielding a ratio of $t_{\text{eff}}/t > 2$. For light incident or nearly incident on the semiconductor, this yields a significantly enhanced effective optical path length that can yield enhanced absorption near the charge collection point. Such an effect is analogous, but yet more tailorable, than the enhancement that occurs due to surface-bound scattering nanoparticles.
Figure S3. (a) Short circuit current density (J_{SC}) as a function of ALD coated TiO$_2$ thickness for coated texturized carbon nanofibers processed to have a significantly lower density of “pillars” compared to results described in Figs. 1 and 3, overlaid with data from Fig. 3. Similar to that shown in Fig. 3c, this result is compared to the values of J_{SC} obtained from TiO$_2$ coated onto smooth pressed graphite substrates. (b) SEM image of the lower density texturized carbon nanofiber substrates, emphasizing the significantly enhanced pillar pitch as compared to that discussed in Figure 1. Although such coated CNF structures are similarly anti-reflective, the enhancement of J_{SC} is only ~2 times that obtained from TiO$_2$/planar graphite – smaller than the factor of ~3 obtained with the higher density texturized structure. This demonstrates that the structure of the texturized CNFs in Figs. 1 and 2 utilized in this study plays a key role in the enhanced photoelectrochemical performance, beyond that which can be explained by only anti-reflectivity. This suggests that enhanced carrier collection due to reduction of band-to-band recombination (Fig. S4, Fig. 4) and enhanced carrier collection are key features in the enhanced current density and efficiency measured in these three-dimensional architectures.